初中数学

如图,在平面直角坐标系中,已知抛物线 y = x 2 + bx + c 与直线 AB 相交于 A B 两点,其中 A ( - 3 , - 4 ) B ( 0 , - 1 )

(1)求该抛物线的函数表达式;

(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 PA PB ,求 ΔPAB 面积的最大值;

(3)将该抛物线向右平移2个单位长度得到抛物线 y = a 1 x 2 + b 1 x + c 1 ( a 1 0 ) ,平移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 E ,使以点 B C D E 为顶点的四边形为菱形,若存在,请直接写出点 E 的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = a x 2 + bx + c x 轴于点 A ( 4 , 0 ) B ( 2 , 0 ) ,交 y 轴于点 C ( 0 , 6 ) ,在 y 轴上有一点 E ( 0 , 2 ) ,连接 AE

(1)求二次函数的表达式;

(2)若点 D 为抛物线在 x 轴负半轴上方的一个动点,求 ΔADE 面积的最大值;

(3)抛物线对称轴上是否存在点 P ,使 ΔAEP 为等腰三角形?若存在,请直接写出所有 P 点的坐标,若不存在,请说明理由.

来源:2018年山东省泰安市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + 6 x 5 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,其顶点为 P ,连接 PA AC CP ,过点 C y 轴的垂线 l

(1)求点 P C 的坐标;

(2)直线 l 上是否存在点 Q ,使 ΔPBQ 的面积等于 ΔPAC 的面积的2倍?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,已知点 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 1 ) 在抛物线 y = a x 2 + bx + c 上.

(1)求抛物线解析式;

(2)在直线 BC 上方的抛物线上求一点 P ,使 ΔPBC 面积为1;

(3)在 x 轴下方且在抛物线对称轴上,是否存在一点 Q ,使 BQC = BAC ?若存在,求出 Q 点坐标;若不存在,说明理由.

来源:2018年山东省日照市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c y 轴交于点 A ( 0 , 2 ) ,对称轴为直线 x = 2 ,平行于 x 轴的直线与抛物线交于 B C 两点,点 B 在对称轴左侧, BC = 6

(1)求此抛物线的解析式.

(2)点 P x 轴上,直线 CP ΔABC 面积分成 2 : 3 两部分,请直接写出 P 点坐标.

来源:2018年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c y 轴交于点 A ( 0 , 2 ) ,对称轴为直线 x = 2 ,平行于 x 轴的直线与抛物线交于 B C 两点,点 B 在对称轴左侧, BC = 6

(1)求此抛物线的解析式.

(2)点 P x 轴上,直线 CP ΔABC 面积分成 2 : 3 两部分,请直接写出 P 点坐标.

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,二次函数 y = - x 2 + bx + 3 的图象与 x 轴交于点 A B ,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 D OC 的中点,点 P 在抛物线上.

(1) b =         

(2)若点 P 在第一象限,过点 P PH x 轴,垂足为 H PH C BD 分别交于点 M N .是否存在这样的点 P ,使得 PM = MN = NH ?若存在,求出点 P 的坐标;若不存在,请说明理由;

(3)若点 P 的横坐标小于3,过点 P PQ BD ,垂足为 Q ,直线 PQ x 轴交于点 R ,且 S ΔPQB = 2 S ΔQRB ,求点 P 的坐标.

来源:2019年江苏省常州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,是将抛物线 y = x 2 平移后得到的抛物线,其对称轴为 x = 1 ,与 x 轴的一个交点为 A ( 1 , 0 ) ,另一个交点为 B ,与 y 轴的交点为 C

(1)求抛物线的函数表达式;

(2)若点 N 为抛物线上一点,且 BC NC ,求点 N 的坐标;

(3)点 P 是抛物线上一点,点 Q 是一次函数 y = 3 2 x + 3 2 的图象上一点,若四边形 OAPQ 为平行四边形,这样的点 P Q 是否存在?若存在,分别求出点 P Q 的坐标;若不存在,说明理由.

来源:2017年山东省泰安市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

在画二次函数的图象时,甲写错了一次项的系数,列表如下

0

1

2

3

6

3

2

3

6

乙写错了常数项,列表如下:

0

1

2

3

2

7

14

通过上述信息,解决以下问题:

(1)求原二次函数的表达式;

(2)对于二次函数,当  时,的值随的值增大而增大;

(3)若关于的方程有两个不相等的实数根,求的取值范围.

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,二次函数的图象与轴交于点和点,与轴交于点,以为边在轴上方作正方形,点轴上一动点,连接,过点的垂线与轴交于点

(1)求该抛物线的函数关系表达式;

(2)当点在线段(点不与重合)上运动至何处时,线段的长有最大值?并求出这个最大值;

(3)在第四象限的抛物线上任取一点,连接.请问:的面积是否存在最大值?若存在,求出此时点的坐标;若不存在,请说明理由.

来源:2019年湖南省衡阳市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x 1 ) ( x 3 ) x 轴交于 A B 两点,与 y 轴的正半轴交于点 C ,其顶点为 D

(1)写出 C D 两点的坐标(用含 a 的式子表示);

(2)设 S ΔBCD : S ΔABD = k ,求 k 的值;

(3)当 ΔBCD 是直角三角形时,求对应抛物线的解析式.

来源:2017年广西贵港市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 3 x + 5 4 x 轴相交于 A B 两点,与 y 轴相交于点 C ,点 D 是直线 BC 下方抛物线上一点,过点 D y 轴的平行线,与直线 BC 相交于点 E

(1)求直线 BC 的解析式;

(2)当线段 DE 的长度最大时,求点 D 的坐标.

来源:2016年辽宁省大连市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象与 x 轴交于 A B 两点, D 为顶点,其中点 B 的坐标为 ( 5 , 0 ) ,点 D 的坐标为 ( 1 , 3 )

(1)求该二次函数的表达式;

(2)点 E 是线段 BD 上的一点,过点 E x 轴的垂线,垂足为 F ,且 ED = EF ,求点 E 的坐标.

(3)试问在该二次函数图象上是否存在点 G ,使得 ΔADG 的面积是 ΔBDG 的面积的 3 5 ?若存在,求出点 G 的坐标;若不存在,请说明理由.

来源:2019年江苏省淮安市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

平面直角坐标系 xOy 中,二次函数 y = x 2 2 mx + m 2 + 2 m + 2 的图象与 x 轴有两个交点.

(1)当 m = 2 时,求二次函数的图象与 x 轴交点的坐标;

(2)过点 P ( 0 , m 1 ) 作直线 l y 轴,二次函数图象的顶点 A 在直线 l x 轴之间(不包含点 A 在直线 l 上),求 m 的范围;

(3)在(2)的条件下,设二次函数图象的对称轴与直线 l 相交于点 B ,求 ΔABO 的面积最大时 m 的值.

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题