如图,在平面直角坐标系中,二次函数 y = a x 2 + bx + c 交 x 轴于点 A ( − 4 , 0 ) 、 B ( 2 , 0 ) ,交 y 轴于点 C ( 0 , 6 ) ,在 y 轴上有一点 E ( 0 , − 2 ) ,连接 AE .
(1)求二次函数的表达式;
(2)若点 D 为抛物线在 x 轴负半轴上方的一个动点,求 ΔADE 面积的最大值;
(3)抛物线对称轴上是否存在点 P ,使 ΔAEP 为等腰三角形?若存在,请直接写出所有 P 点的坐标,若不存在,请说明理由.
如图,△ABC是一块锐角三角形余料,其中BC=12cm,高AD=8cm,现在要把它裁成一块正方形材料备用,使正方形的一边QM在BC上,其余两个顶点P,N分别在AB,AC上,问这块正方形材料的边长是多少?
如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,。 (1)求证:△ABF∽△CEB; (2)若△DEF的面积为2,求□ABCD的面积。
如图,某中学初三(2)班数学活动小组利用周日开展课外实践活动,他们要在湖面上测量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45°,沿直线CD向塔AB方向前进18米到达点D,测得塔顶A的仰角为60度.已知湖面低于地平面1米,请你帮他们计算出塔AB的高度.(结果保留根号)
如图,点D,E在BC上,且FD∥AB,FE∥AC。 求证:△ABC∽△FDE.
如图1,在⊙O中,E是弧AB的中点,C为⊙O上的一动点(C与E在AB异侧),连接EC交AB于点F,EB=(r是⊙O的半径). (1)D为AB延长线上一点,若DC=DF,证明:OC⊥CD; (2)如图2,当F是AB的四等分点且EF·EC=时,求EC的值.