某网站出售一种毛绒兔玩具,试销中发现这种玩具每个获利x元时,一天需销售(60-x)个,如果要使一天出售该种玩具获得最大销售利润,那么每个玩具应获利多少元?
(1)求x的值:4(x+1) =64 (2)计算:+
如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线经过点C,交y轴于点G.(1)求C,D坐标;(2)已知抛物线顶点上,且经过C,D,若抛物线与y交于点M连接MC,设点Q是线段下方此抛物线上一点,当点Q运动到什么位置时,△MCQ的面积最大?求出此时点Q的坐标和面积的最大值.(3)将(2)中抛物线沿直线平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使⊿EFG为等腰三角形?若存在,请求 出此时抛物线的解析式;若不存在,请说明理由.
如图1,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE.(1)若AF是△ABE的中线,且AF=5,AE=6,连结DF,求DF的长;(2)若AF是△ABE的高,延长AF交BC于点G.①如图2,若点E是AC边的中点,连结EG,求证:AG+EG=BE;②如图3,若点E是AC边上的动点,连结DF.当点E在AC边上(不含端点)运动时,∠DFG的大小是否改变,如果不变,请求出∠DFG的度数;如果要变,请说明理由.
定义符号的含义为:当时, ;当时, .如:,.(1)求;(2)已知, 求实数的取值范围;(3)当时,.直接写出实数的取值范围.
如图,某建筑物BC上有一旗杆AB,小明在F处,由E点观察到旗杆顶部A的仰角为,底部B的仰角为,小明的观测点与地面距离EF为1.6m, (1)若F与BC相距12m,求建筑物BC的高度; (2)若旗杆AB长3.15m,求建筑物BC的高度.(结果精确到0.1m)(参考数据:4 ,).