平面直角坐标系 xOy 中,二次函数 y = x 2 − 2 mx + m 2 + 2 m + 2 的图象与 x 轴有两个交点.
(1)当 m = − 2 时,求二次函数的图象与 x 轴交点的坐标;
(2)过点 P ( 0 , m − 1 ) 作直线 l ⊥ y 轴,二次函数图象的顶点 A 在直线 l 与 x 轴之间(不包含点 A 在直线 l 上),求 m 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 l 相交于点 B ,求 ΔABO 的面积最大时 m 的值.
如图所示,已知AB为⊙O的直径,CD是弦,且ABCD于点E.连接AC、OC、BC. (1)求证:ACO=BCD. (2)若EB=,CD=,求⊙O的直径.
如图,已知A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD. (1)求证:DB平分∠ADC; (2)若BE=3,ED=6,求AB的长.
某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面. (1)请你补全这个输水管道的圆形截面; (2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.
一位同学拿了两块相同的三角尺和做了一个探究活动:将的直角顶点放在的斜边的中点处,设. (1)如图(1),两三角尺的重叠部分为,则重叠部分的面积为,周长为. (2)将图(1)中的绕顶点逆时针旋转,得到图(2),此时重叠部分的面积为,周长为. (3)如果将绕旋转到不同于图(1)和图(2)的图形,如图(3),请你猜想此时重叠部分的面积为. (4)在图(3)情况下,若,求出重叠部分图形的周长.
如图,已知抛物线经过A(2,0)、B(0,-6)两点,其对称轴与轴交于点C. (1)求该抛物线和直线BC的解析式; (2)设抛物线与直线BC相交于点D,连结AB、AD,求△ABD的面积.