如图,二次函数 y = - x 2 + bx + 3 的图象与 x 轴交于点 A 、 B ,与 y 轴交于点 C ,点 A 的坐标为 ( - 1 , 0 ) ,点 D 为 OC 的中点,点 P 在抛物线上.
(1) b = ;
(2)若点 P 在第一象限,过点 P 作 PH ⊥ x 轴,垂足为 H , PH 与 C 、 BD 分别交于点 M 、 N .是否存在这样的点 P ,使得 PM = MN = NH ?若存在,求出点 P 的坐标;若不存在,请说明理由;
(3)若点 P 的横坐标小于3,过点 P 作 PQ ⊥ BD ,垂足为 Q ,直线 PQ 与 x 轴交于点 R ,且 S ΔPQB = 2 S ΔQRB ,求点 P 的坐标.
根据多项式乘多项式,我们知道,反之也有,这其实就是形如的二次三项式进行因式分解.这里分解的关键就是能分解为两个数的积,而这两个数的和恰好是.例如要分解多项式,由于既可以分解为“1和6的乘积”,也可以分解为“2和3”的乘积,但1与6之和不能等于5,故排除,因此有.试用这种方法分解下面的多项式:⑴;⑵.
若,求的值.
试说明:比4个连续正整数的乘积大1的数一定是某整数的平方.
计算:32-1=;52-32=;72-52=;92-72=;…… ⑴根据以上的计算,你发现什么规律,请用含n的式子表示; ⑵用分解因式的知识说明你发现的规律.
利用因式分解计算: