我们知道,任意一个正整数 x 都可以进行这样的分解: x = m × n ( m , n 是正整数,且 m ⩽ n ) ,在 x 的所有这种分解中,如果 m , n 两因数之差的绝对值最小,我们就称 m × n 是 x 的最佳分解.并规定: f ( x ) = m n .
例如:18可以分解成 1 × 18 , 2 × 9 或 3 × 6 ,因为 18 - 1 > 9 - 2 > 6 - 3 ,所以 3 × 6 是18的最佳分解,所以 f ( 18 ) = 3 6 = 1 2 .
(1)填空: f (6) = ; f (9) = ;
(2)一个两位正整数 t ( t = 10 a + b , 1 ⩽ a ⩽ b ⩽ 9 , a , b 为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求 f ( t ) 的最大值;
(3)填空:
① f ( 2 2 × 3 × 5 × 7 ) = ;② f ( 2 3 × 3 × 5 × 7 ) = ;③ f ( 2 4 × 3 × 5 × 7 ) = ;④ f ( 2 5 × 3 × 5 × 7 ) = .
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30º,EF⊥AB,垂足为F,连结DF。 (1)试说明AC=EF; (2)求证:四边形ADFE是平行四边形。
已知二次函数的图象如图所示,它与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3)。(1)求出b,c的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y为正数时,自变量x的取值范围。
分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图所示)。欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘。(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由。
已知一元二次方程。(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且,求m的值。
如图,PA与⊙O相切于A点,弦AB⊥OP,垂足为C,OP与⊙O相交于D点,已知OA=2,OP=4。(1)求∠POA的度数;(2)计算弦AB的长。