在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下
x
……
-1
0
1
2
3
y甲
6
乙写错了常数项,列表如下:
y乙
-2
7
14
通过上述信息,解决以下问题:
(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;
(2)对于二次函数y=ax2+bx+c(a≠0),当x ⩾-1 时,y的值随x的值增大而增大;
(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.
(本题12分)某校规划在一块长AD为18m,宽AB为13m的长方形场地ABCD上,设计分别与AD,AB平行的横向通道和纵向通道,其余部分铺上草皮。(1)如图1,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM:AN=8:9,问通道的宽是多少?(2)为了建造花坛,要修改(1)中的方案,如图2,将三条通道改为两条通道,纵向的宽度改为横向宽度的2倍,其余四块草坪相同,且每一块草坪均有一边长为8m,这样能在这些草坪建造花坛。如图3,在草坪RPCQ中,已知RE⊥PQ于点E,CF⊥PQ于点F,求花坛RECF的面积。
(本题10分)如果抛物线过定点M(1,1),则称此抛物线为定点抛物线。(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式。小敏写出了一个答案:,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线,求该抛物线顶点纵坐标的值最小时的解析式,请你解答。
(本题8分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°。(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m)。备用数据:,
(本题8分)为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图。根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?
(本题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中。小敏离家的路程(米)和所经过的时间之间的函数图象如图所示。请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?