在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下
x
……
-1
0
1
2
3
y甲
6
乙写错了常数项,列表如下:
y乙
-2
7
14
通过上述信息,解决以下问题:
(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;
(2)对于二次函数y=ax2+bx+c(a≠0),当x ⩾-1 时,y的值随x的值增大而增大;
(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.
解不等式组:
若a2-a-6=0,求分式的值.
如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE. (1)求证:AB∥CE; (2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.
如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E,则线段BD和CE具有什么数量关系,并证明你的结论.
某校学生会准备调查2014-2015学年八年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数. (1)确定调查方式时,甲同学说:“我到2014-2015学年八年级(1)班去调查全体同学”;乙同学说:“放学时我倒校门口随机调查部分同学”;丙同学说:“我到2014-2015学年八年级每个班随机调查一定数量的同学”.则调查方式最合理的是同学. (2)他们采用了最合理的调查方法收集数据,并绘制了下表和扇形统计图.
请你根据图表中提供的信息解答下列问题: ①求a、b的值; ②在扇形统计图中,求“器乐类”所对应扇形的圆心角的度数.