首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 109

如图,二次函数 y 1 4 x 2 + bx + c 的图象过点 A 4 ,﹣ 4 B (﹣ 2 m ,交y轴于点 C 0 ,﹣ 4 .直线BO与抛物线相交于另一点D,连接 AB AD ,点E是线段AB上的一动点,过点E EF BD AD于点F

(1)求二次函数 y 1 4 x 2 + bx + c 的表达式;

(2)判断 AB D 的形状,并说明理由;

(3)在点E的运动过程中,直线 BD 上存在一点G,使得四边形AFGE为矩形,请判断此时 AG BD 的数量关系,并求出点E的坐标;

(4)点H是抛物线的顶点,在(3)的条件下,点P是平面内使得 EPF 90 ° 的点,在抛物线的对称轴上,是否存在点Q,使得 HPQ 是以 PQH 为直角的等腰直角三角形,若存在,直接写出符合条件的所有点Q的坐标;若不存在,请说明理由.

登录免费查看答案和解析

如图,二次函数y=14x2bxc的图象过点A(4,﹣4),B