某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为 A 、 B 、 C 、 D 、 E ) .
(本小题满分9分) 化简:已知, .
已知:直线y=kx-3与x轴交于点A(4,0),与y轴交于点C,抛物线y=-x2+mx+n经过点A和点C,动点P在x轴上以每秒1个单位的速度由抛物线与x轴的另一个交点B向点A运动,点Q由点C沿着线段CA向点A运动且速度是点P运动速度的2倍。(1).求直线和抛物线的解析式;(2).如果点P和点Q同时出发,运动时间为t(秒),试问t为何值时△PQA是直角三角形。
如图:四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c的图象恰好经过x轴上的点A、B。(1)求:点C的坐标;(2)若抛物线向上平移后恰好经过点D,求:平移后抛物线的解析式。
已知:矩形ABCD中,AB=6,∠BAC=30o,点E在CD上,若AE=4,求:梯形AECB的面积;若点F在AC上,且∠AFB=∠CEA,求:的值。
新定义:抛物线在直线的一侧,直线与抛物线有且只有一个公共点时,称直线与抛物线相切;公共点叫做切点。 那么当二次函数y=x2+mx与y=3x+m-2的图象相切时,求:m 的值以及切点的坐标。