(2) ∵ tan ∠ ACB = AB BC = 2 2 , BC = 2 ,
∴ AB = BC · tan ∠ ACB = 2 ,
∴ AC = 6 ;
又 ∵ ∠ ACB = ∠ DCE ,
∴ tan ∠ DCE = tan ∠ ACB = 2 2 ,
∴ DE = DC · tan ∠ DCE = 1 ;
方法一:在 Rt Δ CDE 中, CE = C D 2 + D E 2 = 3 ,
连接 OE ,设 ⊙ O 的半径为 r ,则在 Rt Δ COE 中, C O 2 = O E 2 + C E 2 ,即 ( 6 − r ) 2 = r 2 + 3
解得: r = 6 4
方法二: AE = AD − DE = 1 ,过点 O 作 OM ⊥ AE 于点 M ,则 AM = 1 2 AE = 1 2
在 Rt Δ AMO 中, OA = AM cos ∠ EAO = 1 2 ÷ 2 6 = 6 4
本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.
已知函数轴交点的纵坐标为,且当,则此函数的解析式为 .
的图像上有两点,知,你能说出与有什么关系吗?
(1)已知关于x的一次函数y=(2k-3)x+k-1的图像与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围; (2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.
对于任何实数x,点M(x,x-1)一定不在第几象限?
在直角坐标系中,有四个点A(-8,3),B(-4,5),C(0,n),D(m,0),当四边形ABCD的周长最短时,求的值.