如图,在直角坐标系中,四边形 OABC 是平行四边形,经过 A ( - 2 , 0 ) , B , C 三点的抛物线 y = a x 2 + bx + 8 3 ( a < 0 ) 与 x 轴的另一个交点为 D ,其顶点为 M ,对称轴与 x 轴交于点 E .
(1)求这条抛物线对应的函数表达式;
(2)已知 R 是抛物线上的点,使得 ΔADR 的面积是 ▱ OABC 的面积的 3 4 ,求点 R 的坐标;
(3)已知 P 是抛物线对称轴上的点,满足在直线 MD 上存在唯一的点 Q ,使得 ∠ PQE = 45 ° ,求点 P 的坐标.
如图,已知□ABCD中,过点A作AM⊥BC于点M,交BD于点E,过点C作CN⊥AD于点N,交BD于点F,连结AF、CE. (1)求证:△ADE≌△BCF; (2)求证:四边形AECF为平行四边形; (3)当□AECF为菱形时,M点恰为BC的中点,求CF:BC的值.
如图,BD是海秀大道东西走向的一段.海秀大道限速70千米/小时.在测速点A的正北方米的B处有一辆汽车正向东行驶.第一次测得该汽车在A的北偏东300的C处;2秒钟后,又测得该汽车在A的北偏东600的D处.求这辆汽车的速度是多少?它超速了吗?
某城市对教师试卷讲评课中学生参与的深度与广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制了如下两幅不完整的统计图(图1,图2),请根据图中所给信息解答下列问题: (1)在这次评价中,一共抽查了名学生; (2)请将条形图补充完整; (3)在扇形统计图中,“主动质疑”所对应的扇形圆心角度数为; (4)如果全市有16万名初中学生,那么在试卷评讲课中,“独立思考”的学生约有多少万人?
某宾馆有单人间和双人间两种房间,入住3个单人间和6个双人间共需1020元,入住1个单人间和5个双人间共需700元,则入住单人间和双人间各5个共需多少元?
如图,在△ABC中,AB=AC=13,BC=10,AD⊥BC于点D,DE⊥AB于点E,则BE等于.