如图1,抛物线 y = a x 2 + 2 x + c 与 x 轴交于 A ( − 4 , 0 ) , B ( 1 , 0 ) 两点,过点 B 的直线 y = kx + 2 3 分别与 y 轴及抛物线交于点 C , D .
(1)求直线和抛物线的表达式;
(2)动点 P 从点 O 出发,在 x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 t 秒,当 t 为何值时, ΔPDC 为直角三角形?请直接写出所有满足条件的 t 的值;
(3)如图2,将直线 BD 沿 y 轴向下平移4个单位后,与 x 轴, y 轴分别交于 E , F 两点,在抛物线的对称轴上是否存在点 M ,在直线 EF 上是否存在点 N ,使 DM + MN 的值最小?若存在,求出其最小值及点 M , N 的坐标;若不存在,请说明理由.
解方程: (1) (2)
某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件; (1)若商场平均每天要赢利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天赢利最多?
如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.
要对一块长60米,宽40米的矩形荒地ABCD进行绿化和硬化、设计方案如图所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.
如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3). (1)画出△ABC关于x轴对称的△A1B1C1; (2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2; (3)△OB2P为等腰三角形,且P在x轴上,请直接写出所有符合条件的P点坐标.