如图,抛物线 y = a x 2 + bx 经过 ΔOAB 的三个顶点,其中点 A ( 1 , 3 ) ,点 B ( 3 , − 3 ) , O 为坐标原点.
(1)求这条抛物线所对应的函数表达式;
(2)若 P ( 4 , m ) , Q ( t , n ) 为该抛物线上的两点,且 n < m ,求 t 的取值范围;
(3)若 C 为线段 AB 上的一个动点,当点 A ,点 B 到直线 OC 的距离之和最大时,求 ∠ BOC 的大小及点 C 的坐标.
如图,反比例函数的图像与一次函数的图像交于点A(m,2),点B(-2, n ),一次函数图像与y轴的交点为C.求△AOC的面积。
如图所示,在平面直角坐标系中,一次函数y=kx+1,的图像与反比例函数的图像在第一象限相交于点A,过点A分别作x 轴、y轴的垂线,垂足为点B、C.如果四边形OBAC是正方形,求一次函数的关系式.
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一点)的路线是抛物线的一部分,如图. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
已知二次函数当x=1时,y有最大值为5,且它的图象经过点(2,3),求这个函数的关系式.
与成反比例,当=2时,=-1,求函数解析式和自变量的取值范围。