首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 较难
  • 浏览 52

如图,在平面直角坐标系中,二次函数 y = 1 3 x 2 + bx + c 的图象经过平行四边形 ABCD 的顶点 B D ( 5 , 2 ) DE x 轴,垂足为点 E .点 A y 轴正半轴上,点 B x 轴负半轴上,点 C x 轴正半轴上,且 tan BAO = 1 2

(1)求二次函数的表达式,并判断点 C 是否在该函数图象上;

(2)点 F 是线段 AD 上一点,在线段 AD 下方作 HFK = 90 °

①当点 F 运动时,使 HFK 的一边 FH 始终过点 O ,另一边 FK 交射线 DE 于点 N ,(不含点 D N 重合的情形)设 AF = n DN = m ,求 m 关于 n 的函数关系式,并求出 m 的取值范围.

②当 AF = 1 时,将 HFK 绕点 F 旋转,一条边 FH 交线段 OA 于点 P ,另一条边 FK 交线段 OE 于点 Q ,连接 PQ ,以 PQ 为直径作 M ,设圆心 M 的坐标为 ( x , y ) ,求 y x 之间的函数关系式,并直接写出点 P 从点 O 运动到点 A 时圆心 M 运动的路径长.

登录免费查看答案和解析

如图,在平面直角坐标系中,二次函数y13x2bxc的图象经过