已知抛物线 y = a x 2 + bx + c 与 x 轴交于 A ( - 1 , 0 ) , B ( 5 , 0 ) 两点, C 为抛物线的顶点,抛物线的对称轴交 x 轴于点 D ,连结 BC ,且 tan ∠ CBD = 4 3 ,如图所示.
(1)求抛物线的解析式;
(2)设 P 是抛物线的对称轴上的一个动点.
①过点 P 作 x 轴的平行线交线段 BC 于点 E ,过点 E 作 EF ⊥ PE 交抛物线于点 F ,连结 FB 、 FC ,求 ΔBCF 的面积的最大值;
②连结 PB ,求 3 5 PC + PB 的最小值.
解不等式组.
如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限. (1)求该抛物线所对应的函数关系式; (2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B.DE⊥x轴于点C. ①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长; ②求矩形ABCD的周长的最大值,并写出此时点A的坐标; ③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由.
如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ. (1)求证:△BDQ≌△ADP; (2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).
在海南东环高铁上运行的一列“和谐号”动车组有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设座位64个,每节二等车厢设座位92个.试求该列车一等车厢和二等车厢各有多少节?
在正方形网格中建立如图所示的平面直角坐标系xoy.△ABC的三个顶点都在格点上,点A的坐标是(4,4 ),请解答下列问题; (1)将△ABC向下平移5个单位长度,画出平移后的A1B1C1,并写出点A的对应点A1的坐标; (2)画出△A1B1C1关于y轴对称的△A2B2C2; (3)将△ABC绕点C逆时针旋转90°,画出旋转后的的△A3B3C.