在平面直角坐标系 xOy 中,已知抛物线 y = a x 2 + bx + c 与 x 轴交于 A ( - 1 , 0 ) , B ( 4 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 2 ) .
(1)求抛物线的函数表达式;
(2)如图1,点 D 为第四象限抛物线上一点,连接 AD , BC 交于点 E ,连接 BD ,记 ΔBDE 的面积为 S 1 , ΔABE 的面积为 S 2 ,求 S 1 S 2 的最大值;
(3)如图2,连接 AC , BC ,过点 O 作直线 l / / BC ,点 P , Q 分别为直线 l 和抛物线上的点.试探究:在第一象限是否存在这样的点 P , Q ,使 ΔPQB ∽ ΔCAB .若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.
如图,在等腰梯形ABCD中,ABDC,AB=3,DC=,高CE=2,对角线AC、BD交于H,平行于线段BD的两条直线MN、RQ同时从点A出发沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G;当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的图形面积为S1、被直线RQ扫过的图形面积为S2,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒. (1)填空:∠AHB= ;AC= ; (2)若S2=3S1,求x; (3)设S2=mS1,求m的变化范围.
已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上. (1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果); (2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论; (3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.
观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, … 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据上述各式反映的规律填空,使式子称为“数字对称等式”: ①52× = ×25; ② ×396=693× . (2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.
如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B. (1)求二次函数与一次函数的解析式; (2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.
如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE. 求证:(1)△ADA′≌△CDE; (2)直线CE是线段AA′的垂直平分线.