(本小题满分10分)如图1,直角△ABC中,∠ABC=90°,AB是⊙O的直径,⊙O交AC于点D,过点D的直线交BC于点E,交AB的延长线于点P,∠A=∠PDB.(1)求证:PD是⊙O的切线;(2)若BD=BP=,求图中曲边三角形(阴影部分)的周长;(3)如图2,点M是 的中点,连接DM,交AB于点N,若tan∠A=,求的值.
某学生站在公园湖边的M处,测得湖心亭A位于北偏东30°方向上,又测得游船码头B位于南偏东60°方向上.现有一艘游船从湖心亭A 处沿正南方向航行返回游船码头,已知M处与AB的距离MN=0.7千米,求湖心亭与游船码头B的距离(精确到0.1千米).
要求tan30°的值,可构造如图所示的直角三角形进行计算.作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,那么BC=,∠ABC=" 30" °∴tan30°=.在此图的基础上,通过添加适当的辅助线,可求出tan15°的值,请简要写出你添加的辅助线和求出的tan15°的值.
如图,有一个同学用一个含有30°角的直角三角板估测他们学校的旗杆AB 的高度,他将30°的直角边水平放在1.3米高的支架CD上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D、B的距离为15米,求旗杆AB的高度(精确到0.1米).
如图,从B点测得塔顶A的仰角为60°,测得塔基D的仰角为45°,已知塔基高出测量仪器20米(即DC=20米),求塔身AD的高(精确到1米).
计算:cos 60°-3tan30°+tan60°+2sin245°.