已知二次函数 y = a x 2 + bx + c 的图象经过 ( - 2 , 1 ) , ( 2 , - 3 ) 两点.
(1)求 b 的值;
(2)当 c > - 1 时,该函数的图象的顶点的纵坐标的最小值是 1 .
(3)设 ( m , 0 ) 是该函数的图象与 x 轴的一个公共点.当 - 1 < m < 3 时,结合函数的图象,直接写出 a 的取值范围.
如图,已知锐角△ABC. (1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.
先化简,再求值:,其中.
解方程:.
抛物线y=ax2+3交x轴于A(-4,0)、B两点,交y轴于C.将一把宽度为1.2的直尺如图放置在直角坐标系中,使直尺边A′D′∥BC,直尺边A′D′交x轴于E,交AC于F,交抛物线于G,直尺另一边B′C′交x轴于D.当点D与点A重合时,把直尺沿x轴向右平移,当点E与点B重合时,停止平移,在平移过程中,△FDE的面积为S. (1)请你求出S的最大值及抛物线解析式; (2)在直尺平移过程中,直尺边B′C′上是否存在一点P,使点P、D、E、F构成的四边形这菱形,若存在,请你求出点P坐标;若不存在,请说明理由; (3)过G作GH⊥x轴于H ①在直尺平移过程中,请你求出GH+HO的最大值; ②点Q、R分别是HC、HB的中点,请你直接写出在直尺平移过程中,线段QR扫过的图形的面积和周长.
潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
说明:不同种植户种植的同类蔬菜每亩平均收入相等. (1)求A、B两类蔬菜每亩平均收入各是多少元? (2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.