如图,在平面直角坐标系 xOy 中,抛物线 C 1 : y = m x 2 + n ( m ≠ 0 ) 与 x 轴交于 A 、 B 两点,与 y 轴的负半轴交于点 C ,其中 A ( − 1 , 0 ) , C ( 0 , − 1 ) .
(1)求抛物线 C 1 及直线 AC 的解析式.
(2)沿直线 AC 由 A 至 C 的方向平移抛物线 C 1 ,得到新的抛物线 C 2 , C 2 上的点 D 为 C 1 上的点 C 的对应点,若抛物线 C 2 恰好经过点 B ,同时与 x 轴交于另一点 E ,连接 OD 、 DE ,试判断 ΔODE 的形状,并说明理由.
(3)在(2)的条件下,若 P 为线段 OE (不含端点)上一动点,作 PF ⊥ DE 于 F , PG ⊥ OD 于点 G ,设 PF = h 1 , PG = h 2 .试判断 h 1 · h 2 的值是否存在最大值?若存在,求出这个最大值,并求出此时点 P 的坐标;如不存在,请说明理由.
如图,请你在右图中建立直角坐标系,使汽车站的坐标是(3,1),并用坐标说明医院和学校的位置.
已知数轴上两点A、B对应的数分别为、3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A,点B的距离相等,求点P对应的数; (2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由; (3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,当遇到B时,点P立即以同样的速度向左运动……点P不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?
如图,已知为上一点,与互补,分别为,的平分线,若. (1)与相等吗?请说明理由; (2)试求与的度数.
某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏本,还是不盈不亏?
某车床生产一种工件,该工件的标准直径为,下面是从中抽取的5个工件的检测结果(单位:):305,408,402,380,405.该车床所生产的工件的合格率是多少?