如图,在平面直角坐标系 xOy 中,抛物线 C 1 : y = m x 2 + n ( m ≠ 0 ) 与 x 轴交于 A 、 B 两点,与 y 轴的负半轴交于点 C ,其中 A ( − 1 , 0 ) , C ( 0 , − 1 ) .
(1)求抛物线 C 1 及直线 AC 的解析式.
(2)沿直线 AC 由 A 至 C 的方向平移抛物线 C 1 ,得到新的抛物线 C 2 , C 2 上的点 D 为 C 1 上的点 C 的对应点,若抛物线 C 2 恰好经过点 B ,同时与 x 轴交于另一点 E ,连接 OD 、 DE ,试判断 ΔODE 的形状,并说明理由.
(3)在(2)的条件下,若 P 为线段 OE (不含端点)上一动点,作 PF ⊥ DE 于 F , PG ⊥ OD 于点 G ,设 PF = h 1 , PG = h 2 .试判断 h 1 · h 2 的值是否存在最大值?若存在,求出这个最大值,并求出此时点 P 的坐标;如不存在,请说明理由.
已知:如图,AB是⊙O的弦,,,点C是弦AB上一动点(不与点A、B重合),连结CO并延长交⊙O于点D,连结AD.(1)求弦AB的长;(2)当时,求的度数;(3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、O、C为顶点的三角形相似?
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=6,试求BC、CD的长.
已知:反比例函数(且为正整数)的图象分布在第二、四象限,与一次函数(b为常数)的图象相交于点.试确定反比例函数和一次函数的解析式.
如图,AB为⊙O的弦,C、D分别是OA、OB延长线上的点,且CD∥AB,CD交⊙O于点E、F,若,.(1)求OD的长;(2)若,求弦EF的长.
已知:如图,在Rt中,,点D是斜边AB上的一点,且CD=AC=3,AB=4,求,及的值.