如图,在平面直角坐标系 xOy 中,抛物线 C 1 : y = m x 2 + n ( m ≠ 0 ) 与 x 轴交于 A 、 B 两点,与 y 轴的负半轴交于点 C ,其中 A ( − 1 , 0 ) , C ( 0 , − 1 ) .
(1)求抛物线 C 1 及直线 AC 的解析式.
(2)沿直线 AC 由 A 至 C 的方向平移抛物线 C 1 ,得到新的抛物线 C 2 , C 2 上的点 D 为 C 1 上的点 C 的对应点,若抛物线 C 2 恰好经过点 B ,同时与 x 轴交于另一点 E ,连接 OD 、 DE ,试判断 ΔODE 的形状,并说明理由.
(3)在(2)的条件下,若 P 为线段 OE (不含端点)上一动点,作 PF ⊥ DE 于 F , PG ⊥ OD 于点 G ,设 PF = h 1 , PG = h 2 .试判断 h 1 · h 2 的值是否存在最大值?若存在,求出这个最大值,并求出此时点 P 的坐标;如不存在,请说明理由.
北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子。小明从盒子中任取一张,取到卡片欢欢的概率是多少?小明从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记 下名字。用列表或画树状图列出小明取到的卡片的所有可能情况,并求出两次都取到卡 片欢欢的概率
如图9,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,的顶点均在格点上,坐标为A(1,-4),B(5,-4),C.作出关于轴对称的,并写出点的对称点的坐标;作出关于原点对称的,并写出点的对称点的坐标试判断:与是否关于轴对称(只需写出判断结果)。
如图8,△ABC中,AB=AC,若点D在AB上,点E在AC上,请你加上一个条件,使结论BE=CD成立,同时补全图形,并证明此结论
如图,对称轴为的抛物线与轴相交于点、求抛物线的解析式,并求出顶点的坐标连结AB,把AB所在的直线平移,使它经过原点O,得到直线.点P是上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为,当0<S≤18时,求的取值范围在(2)的条件下,当取最大值时,抛物线上是否存在点,使△OP为直角三角形且OP为直角边.若存在,直接写出点的坐标;若不存在,说明理由.
设绝对值小于1的全体实数的集合为S,在S中定义一种运算“”, 使得证明:结合律成立证明:如果a与b在S中,那么也在S中(说明:可能用到的知识: 即)