如图,已知抛物线 y = − x 2 + bx + c 与 y 轴相交于点 A ( 0 , 3 ) ,与 x 正半轴相交于点 B ,对称轴是直线 x = 1
(1)求此抛物线的解析式以及点 B 的坐标.
(2)动点 M 从点 O 出发,以每秒2个单位长度的速度沿 x 轴正方向运动,同时动点 N 从点 O 出发,以每秒3个单位长度的速度沿 y 轴正方向运动,当 N 点到达 A 点时, M 、 N 同时停止运动.过动点 M 作 x 轴的垂线交线段 AB 于点 Q ,交抛物线于点 P ,设运动的时间为 t 秒.
①当 t 为何值时,四边形 OMPN 为矩形.
②当 t > 0 时, ΔBOQ 能否为等腰三角形?若能,求出 t 的值;若不能,请说明理由.
已知关于的方程的解为非正数,求的取值范围.
解不等式组,并把它的解集表示在数轴上:
下列是小朋友用火柴棒拼出的一列图形: 仔细观察,找出规律,解答下列各题: (1)第四个图中共有________根火柴,第六个图中共有_________根火柴; (2)按照这样的规律,第个图形中共有_________根火柴(用含的代数式表示); (3)按照这样的规律,第2 012个图形中共有多少根火柴?
一杯饮料,第一次倒去一半,第二次倒去剩下的一半……如此倒下去,第五次后剩下饮料是原来的几分之几?第次后呢?
某地电话拨号入网有两种收费方式,用户可以任选其一: (Ⅰ)计时制:0.05元/分; (Ⅱ)包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分. (1)某用户某月上网的时间为小时,请你分别写出两种收费方式下该用户应该支付的费用; (2)若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算?