如图,已知抛物线 y = a x 2 + bx + c 过点 A ( − 3 , 0 ) , B ( − 2 , 3 ) , C ( 0 , 3 ) ,其顶点为 D .
(1)求抛物线的解析式;
(2)设点 M ( 1 , m ) ,当 MB + MD 的值最小时,求 m 的值;
(3)若 P 是抛物线上位于直线 AC 上方的一个动点,求 ΔAPC 的面积的最大值;
(4)若抛物线的对称轴与直线 AC 相交于点 N , E 为直线 AC 上任意一点,过点 E 作 EF / / ND 交抛物线于点 F ,以 N , D , E , F 为顶点的四边形能否为平行四边形?若能,求点 E 的坐标;若不能,请说明理由.
快、慢两车分别从相距480km的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图像,结合图像解答下列问题:(1)求慢车的行驶速度和a的值.(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?
在一个盒子中装有红球、绿球、白球各1个,这3个球除颜色外其余都相同,小明先从盒子中摸出2个球后放回,小李再从盒子中摸出2个球.请用列表或画树状图法求他们摸到的4个球恰好包含所有颜色的概率.
如图,已知∠MON=25°,矩形ABCD的边BC在OM上,对角线AC⊥ON.当AC=5时,求AD的长.(参考数据:sin25°=0.42;cos25°=0.91;tan25°=0.47,结果精确到0.1)
(本题满分8分,每题4分)(1)解方程: x2-4x-3=0 (2)解不等式组:
(本题7分)阅读下列材料:一般地,n个相同的因数a相乘记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24= ,log216= ,log264= .(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式; (3)由(2)的结果,你能归纳出一个一般性的结论吗?logaM+logaN= ;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:an•am=an+m以及对数的含义说明上述结论成立.