如图,抛物线 与 轴交于 、 两点, 点坐标为 .与 轴交于点 .
(1)求抛物线的解析式;
(2)点 在 轴下方的抛物线上,过点 的直线 与直线 交于点 ,与 轴交于点 ,求 的最大值;
(3)点 为抛物线对称轴上一点.
①当 是以 为直角边的直角三角形时,求点 的坐标;
②若 是锐角三角形,求点 的纵坐标的取值范围.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 ,与 轴交于点 .
(1) , ;
(2)若点 在该二次函数的图象上,且 ,求点 的坐标;
(3)若点 是该二次函数图象上位于 轴上方的一点,且 ,写出点 的坐标.
如图,在平面直角坐标系 中,抛物线 与 轴交于 、 两点,与 轴的负半轴交于点 ,其中 , .
(1)求抛物线 及直线 的解析式.
(2)沿直线 由 至 的方向平移抛物线 ,得到新的抛物线 , 上的点 为 上的点 的对应点,若抛物线 恰好经过点 ,同时与 轴交于另一点 ,连接 、 ,试判断 的形状,并说明理由.
(3)在(2)的条件下,若 为线段 (不含端点)上一动点,作 于 , 于点 ,设 , .试判断 的值是否存在最大值?若存在,求出这个最大值,并求出此时点 的坐标;如不存在,请说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于 点,已知 ,且 是抛物线上另一点.
(1)求 、 的值;
(2)连接 ,设点 是 轴上任一点,若以 、 、 三点为顶点的三角形是等腰三角形,求 点的坐标;
(3)若点 是 轴正半轴上且在抛物线内的一动点(不与 、 重合),过点 作 交抛物线的对称轴于 点.设 , 的面积为 ,求 与 之间的函数关系式.
如图(1),在平面直角坐标系中,抛物线 与y轴交于点A,与x轴交于点 ,且经过点B(8,4),连接AB,BO,作 于点M,将 沿y轴翻折,点M的对应点为点N.解答下列问题:
(1)抛物线的解析式为 ,顶点坐标为 ;
(2)判断点N是否在直线AC上,并说明理由;
(3)如图(2),将图(1)中 沿着OB平移后,得到 .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 的面积.
如图,抛物线 经过 的三个顶点,其中点 ,点 , 为坐标原点.
(1)求这条抛物线所对应的函数表达式;
(2)若 , 为该抛物线上的两点,且 ,求 的取值范围;
(3)若 为线段 上的一个动点,当点 ,点 到直线 的距离之和最大时,求 的大小及点 的坐标.
如图1,抛物线 与 轴交于点 和点 ,与 轴交于点 ,抛物线 的顶点为 , 轴于点 .将抛物线 平移后得到顶点为 且对称轴为直线 的抛物线 .
(1)求抛物线 的解析式;
(2)如图2,在直线 上是否存在点 ,使 是等腰三角形?若存在,请求出所有点 的坐标;若不存在,请说明理由;
(3)点 为抛物线 上一动点,过点 作 轴的平行线交抛物线 于点 ,点 关于直线 的对称点为 ,若以 , , 为顶点的三角形与 全等,求直线 的解析式.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图,在平面直角坐标系中,抛物线 交 轴于点 ,交 轴于点 和点 ,过点 作 轴交抛物线于点 .
(1)求此抛物线的表达式;
(2)点 是抛物线上一点,且点 关于 轴的对称点在直线 上,求 的面积;
(3)若点 是直线 下方的抛物线上一动点,当点 运动到某一位置时, 的面积最大,求出此时点 的坐标和 的最大面积.
如图1,抛物线 过 、 两点,交 轴于点 ,过点 作 轴的平行线与抛物线上的另一个交点为 ,连接 、 .点 是该抛物线上一动点,设点 的横坐标为 .
(1)求该抛物线的表达式和 的正切值;
(2)如图2,若 ,求 的值;
(3)如图3,过点 、 的直线与 轴于点 ,过点 作 ,垂足为 ,直线 与 轴交于点 ,试判断四边形 的形状,并说明理由.
在平面直角坐标系 中,已知抛物线 与 轴交于 , 两点,与 轴交于点 .
(1)求抛物线的函数表达式;
(2)如图1,点 为第四象限抛物线上一点,连接 , 交于点 ,连接 ,记 的面积为 , 的面积为 ,求 的最大值;
(3)如图2,连接 , ,过点 作直线 ,点 , 分别为直线 和抛物线上的点.试探究:在第一象限是否存在这样的点 , ,使 .若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图,抛物线 的图象经过 , , 三点.
(1)求抛物线的解析式.
(2)抛物线的顶点 与对称轴 上的点 关于 轴对称,直线 交抛物线于点 ,直线 交 于点 ,若直线 将 的面积分为 两部分,求点 的坐标.
(3) 为抛物线上的一动点, 为对称轴上动点,抛物线上是否存在一点 ,使 、 、 、 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,抛物线 与 轴交于点 、 ,交 轴于点 ,点 为抛物线的顶点,对称轴与 轴交于点 .
(1)求抛物线的解析式;
(2)如图1,连接 ,点 是线段 上方抛物线上一动点, 于点 ,过点 作 轴于点 ,交 于点 .点 是 轴上一动点,当 取最大值时:
①求 的最小值;
②如图2, 点为 轴上一动点,请直接写出 的最小值.
如图,抛物线 与 轴交于点 , ,与 轴交于点 ,线段 的中垂线与对称轴 交于点 ,与 轴交于点 ,与 交于点 ,对称轴 与 轴交于点 .
(1)求抛物线的函数表达式;
(2)求点 的坐标;
(3)点 为 轴上一点, 与直线 相切于点 ,与直线 相切于点 .求点 的坐标;
(4)点 为 轴上方抛物线上的点,在对称轴 上是否存在一点 ,使得以点 , , , 为顶点的四边形是平行四边形?若存在,则直接写出 点坐标;若不存在,请说明理由.