如图1,抛物线 y 1 = a x 2 − 1 2 x + c 与 x 轴交于点 A 和点 B ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , 3 4 ) ,抛物线 y 1 的顶点为 G , GM ⊥ x 轴于点 M .将抛物线 y 1 平移后得到顶点为 B 且对称轴为直线 l 的抛物线 y 2 .
(1)求抛物线 y 2 的解析式;
(2)如图2,在直线 l 上是否存在点 T ,使 ΔTAC 是等腰三角形?若存在,请求出所有点 T 的坐标;若不存在,请说明理由;
(3)点 P 为抛物线 y 1 上一动点,过点 P 作 y 轴的平行线交抛物线 y 2 于点 Q ,点 Q 关于直线 l 的对称点为 R ,若以 P , Q , R 为顶点的三角形与 ΔAMG 全等,求直线 PR 的解析式.
某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误. 回答下列问题: (1)写出条形图中存在的错误,并说明理由; (2)写出这20名学生每人植树量的众数、中位数; (3)在求这20名学生每人植树量的平均数时,小宇是这样分析的: ①小宇的分析是从哪一步开始出现错误的? ②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.
小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜. (1)请用树形图或列表法列出摸笔游戏所有可能的结果; (2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.
如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1). (1)求该反比例函数的关系式; (2)设PC⊥y轴于点C,点A关于y轴的对称点为A′; ①求△A′BC的周长和sin∠BA′C的值; ②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.
已知:如图,梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD相交于点F,点E是边BC延长线上一点,且∠CDE=∠ABD. (1)求证:四边形ACED是平行四边形; (2)联结AE,交BD于点G,求证:.
今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.