如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的图象经过 A ( 1 , 0 ) , B ( 3 , 0 ) , C ( 0 , 6 ) 三点.
(1)求抛物线的解析式.
(2)抛物线的顶点 M 与对称轴 l 上的点 N 关于 x 轴对称,直线 AN 交抛物线于点 D ,直线 BE 交 AD 于点 E ,若直线 BE 将 ΔABD 的面积分为 1 : 2 两部分,求点 E 的坐标.
(3) P 为抛物线上的一动点, Q 为对称轴上动点,抛物线上是否存在一点 P ,使 A 、 D 、 P 、 Q 为顶点的四边形为平行四边形?若存在,求出点 P 的坐标;若不存在,请说明理由.
在半径为5cm的⊙O中,弦AB的长等于6cm,若弦AB的两个端点A、B在⊙O上滑动(滑动过程中AB的长度不变),请说明弦AB的中点C在滑运过程中所经过的路线是什么图形.
半径为5cm的⊙O中,两条平行弦的长度分别为6cm和8cm.则这两条弦的距离为多少?
如图,AB是⊙O的直径,P是AB上一点,C、D分别是圆上的点,且∠CPB=∠DPB,,试比较线段PC、PD的大小关系.
已知:如图,在⊙O中,弦AB的长是半径OA的倍,C为的中点,AB、OC 相交于点M.试判断四边形OACB的形状,并说明理由.
如图,⊙O表示一圆形工件,AB=15cm,OM=8cm,并且MB:MA="1:4," 求工件半径的长.