在平面直角坐标系中,我们定义直线 为抛物线 、 、 为常数, 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 轴上的三角形为其“梦想三角形”.
已知抛物线 与其“梦想直线”交于 、 两点(点 在点 的左侧),与 轴负半轴交于点 .
(1)填空:该抛物线的“梦想直线”的解析式为 ,点 的坐标为 ,点 的坐标为 ;
(2)如图,点 为线段 上一动点,将 以 所在直线为对称轴翻折,点 的对称点为 ,若 为该抛物线的“梦想三角形”,求点 的坐标;
(3)当点 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 ,使得以点 、 、 、 为顶点的四边形为平行四边形?若存在,请直接写出点 、 的坐标;若不存在,请说明理由.
已知抛物线 与 轴交于 , 两点, 为抛物线的顶点,抛物线的对称轴交 轴于点 ,连结 ,且 ,如图所示.
(1)求抛物线的解析式;
(2)设 是抛物线的对称轴上的一个动点.
①过点 作 轴的平行线交线段 于点 ,过点 作 交抛物线于点 ,连结 、 ,求 的面积的最大值;
②连结 ,求 的最小值.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图,抛物线 经过 、 、 三点,点 为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当 的面积为3时,求点 的坐标;
(3)过点 作 ,垂足为点 ,是否存在点 ,使得 中的某个角等于 的2倍?若存在,求点 的横坐标;若不存在,请说明理由.
出关于 的一元二次方程,解之取其非零值可得出点 的横坐标.依此即可得解.
如图1,矩形 的顶点 , 的坐标分别为 , ,直线 交 于点 , ,抛物线 过 , 两点.
(1)求点 的坐标和抛物线 的表达式;
(2)点 是抛物线 对称轴上一动点,当 时,求所有符合条件的点 的坐标;
(3)如图2,点 ,连接 ,将抛物线 的图象向下平移 个单位得到抛物线 .
①设点 平移后的对应点为点 ,当点 恰好在直线 上时,求 的值;
②当 时,若抛物线 与直线 有两个交点,求 的取值范围.
已知,抛物线 与 轴交于 、 两点,与 轴交于点 ,抛物线的对称轴是直线 , 为抛物线的顶点,点 在 轴 点的上方,且 .
(1)求抛物线的解析式及顶点 的坐标;
(2)求证:直线 是 外接圆的切线;
(3)在直线 上方的抛物线上找一点 ,使 ,求点 的坐标;
(4)在坐标轴上找一点 ,使以点 、 、 为顶点的三角形与 相似,直接写出点 的坐标.
已知二次函数 的图象经过 , 两点.
(1)求 的值;
(2)当 时,该函数的图象的顶点的纵坐标的最小值是 1 .
(3)设 是该函数的图象与 轴的一个公共点.当 时,结合函数的图象,直接写出 的取值范围.
如图,抛物线 与 轴交于 、 两点, 点坐标为 ,与 轴交于点 .
(1)求抛物线的解析式;
(2)点 在 轴下方的抛物线上,过点 的直线 与直线 交于点 ,与 轴交于点 ,求 的最大值;
(3)点 为抛物线对称轴上一点.
①当 是以 为直角边的直角三角形时,直接写出点 的坐标;
②若 是锐角三角形,直接写出点 的纵坐标 的取值范围.
如图,直线 分别与 轴、 轴交于 、 两点,点 在 轴上, ,抛物线 经过 , 两点.
(1)求 、 两点的坐标;
(2)求抛物线的解析式;
(3)点 是直线 上方抛物线上的一点,过点 作 于点 ,作 轴交 于点 ,求 周长的最大值.
如图,在平面直角坐标系中,抛物线 交 轴于点 ,交 轴正半轴于点 ,与过 点的直线相交于另一点 ,过点 作 轴,垂足为 .
(1)求抛物线的表达式;
(2)点 在线段 上(不与点 、 重合),过 作 轴,交直线 于 ,交抛物线于点 ,连接 ,求 面积的最大值;
(3)若 是 轴正半轴上的一动点,设 的长为 ,是否存在 ,使以点 、 、 、 为顶点的四边形是平行四边形?若存在,求出 的值;若不存在,请说明理由.
如图,抛物线 与直线 分别相交于 , 两点,且此抛物线与 轴的一个交点为 ,连接 , .已知 , .
(1)求抛物线的解析式;
(2)在抛物线对称轴 上找一点 ,使 的值最大,并求出这个最大值;
(3)点 为 轴右侧抛物线上一动点,连接 ,过点 作 交 轴于点 ,问:是否存在点 使得以 , , 为顶点的三角形与 相似?若存在,请求出所有符合条件的点 的坐标;若不存在,请说明理由.
如图1,在平面直角坐标系 中,抛物线 与 轴相交于 , 两点,顶点为 , ,设点 是 轴的正半轴上一点,将抛物线 绕点 旋转 ,得到新的抛物线 .
(1)求抛物线 的函数表达式;
(2)若抛物线 与抛物线 在 轴的右侧有两个不同的公共点,求 的取值范围.
(3)如图2, 是第一象限内抛物线 上一点,它到两坐标轴的距离相等,点 在抛物线 上的对应点 ,设 是 上的动点, 是 上的动点,试探究四边形 能否成为正方形?若能,求出 的值;若不能,请说明理由.
如图,已知抛物线 过点 , , ,其顶点为 .
(1)求抛物线的解析式;
(2)设点 ,当 的值最小时,求 的值;
(3)若 是抛物线上位于直线 上方的一个动点,求 的面积的最大值;
(4)若抛物线的对称轴与直线 相交于点 , 为直线 上任意一点,过点 作 交抛物线于点 ,以 , , , 为顶点的四边形能否为平行四边形?若能,求点 的坐标;若不能,请说明理由.
如图,在平面直角坐标系 中,直线 分别交 轴、 轴于 , 两点,经过 , 两点的抛物线 与 轴的正半轴相交于点 .
(1)求抛物线的解析式;
(2)若 为线段 上一点, ,求 的长;
(3)在(2)的条件下,设 是 轴上一点,试问:抛物线上是否存在点 ,使得以 , , , 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.