如图,抛物线 y = 1 2 x 2 + bx + c 与直线 y = 1 2 x + 3 分别相交于 A , B 两点,且此抛物线与 x 轴的一个交点为 C ,连接 AC , BC .已知 A ( 0 , 3 ) , C ( − 3 , 0 ) .
(1)求抛物线的解析式;
(2)在抛物线对称轴 l 上找一点 M ,使 | MB − MC | 的值最大,并求出这个最大值;
(3)点 P 为 y 轴右侧抛物线上一动点,连接 PA ,过点 P 作 PQ ⊥ PA 交 y 轴于点 Q ,问:是否存在点 P 使得以 A , P , Q 为顶点的三角形与 ΔABC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.
把下列各式分解因式 (1) (2) (3) (4)
(1)先化简,再求值:(2x+3)(2x-3)-2x(x+1)- (x-1)2,其中x=-1 (2)已知,.求的值。
计算 (1) (2) (3) (4)
如图1,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA、CD的延长线交于点M、N,则∠BME=∠CNE(不需证明). (温馨提示:在图1中,连接BD,取BD的中点H,连接HE、HF,根据三角形中位线定理,证明HE=HF,从而∠1=∠2,再利用平行线性质,可证得∠BME=∠CNE.) 问题一:如图2,在四边形ADBC中,AB与CD相交于点O,AB=CD,E、F分别是BC、AD的中点,连接EF,分别交DC、AB于点M、N,判断△OMN的形状,并说明理由; 问题二:如图3,在△ABC中,AC>AB,D点在AC上,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,与BA的延长线交于点G,若∠EFC=60°,连接GD,判断△AGD的形状并并说明理由.
把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG. (1)求证:△BHE≌△DGF; (2)若AB=6cm,BC=8cm,求线段FG的长.