如图,抛物线 y = 1 2 x 2 + bx + c 与直线 y = 1 2 x + 3 分别相交于 A , B 两点,且此抛物线与 x 轴的一个交点为 C ,连接 AC , BC .已知 A ( 0 , 3 ) , C ( − 3 , 0 ) .
(1)求抛物线的解析式;
(2)在抛物线对称轴 l 上找一点 M ,使 | MB − MC | 的值最大,并求出这个最大值;
(3)点 P 为 y 轴右侧抛物线上一动点,连接 PA ,过点 P 作 PQ ⊥ PA 交 y 轴于点 Q ,问:是否存在点 P 使得以 A , P , Q 为顶点的三角形与 ΔABC 相似?若存在,请求出所有符合条件的点 P 的坐标;若不存在,请说明理由.
为支持亚太地区国家基础设施建设,由中国倡议设立亚投行,截止2015年4月15日,亚投行意向创始成员国确定为57个,其中意向创始成员国数亚洲是欧洲的2倍少2个,其余洲共5个,求亚洲和欧洲的意向创始成员国各有多少个?
如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上. (1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D; (2)证明四边形ABCD是平行四边形.
为开展“争当书香少年”活动,小石对本校部分同学进行“最喜欢的图书类别”的问卷调查,结果统计后,绘制了如下两幅不完整的统计图: 根据以上统计图提供的信息,回答下列问题: (1)此次被调查的学生共人; (2)补全条形统计图; (3)扇形统计图中,艺术类部分所对应的圆心角为度; (4)若该校有1200名学生,估计全校最喜欢“文史类”图书的学生有人.
化简:.
如图1,在平面直角坐标系中,抛物线交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F. (1)求抛物线解析式; (2)如图2,当点F恰好在抛物线上时,求线段OD的长; (3)在(2)的条件下: ①连接DF,求tan∠FDE的值; ②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由.