如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 1 交 y 轴于点 A ,交 x 轴正半轴于点 B ( 4 , 0 ) ,与过 A 点的直线相交于另一点 D ( 3 , 5 2 ) ,过点 D 作 DC ⊥ x 轴,垂足为 C .
(1)求抛物线的表达式;
(2)点 P 在线段 OC 上(不与点 O 、 C 重合),过 P 作 PN ⊥ x 轴,交直线 AD 于 M ,交抛物线于点 N ,连接 CM ,求 ΔPCM 面积的最大值;
(3)若 P 是 x 轴正半轴上的一动点,设 OP 的长为 t ,是否存在 t ,使以点 M 、 C 、 D 、 N 为顶点的四边形是平行四边形?若存在,求出 t 的值;若不存在,请说明理由.
如图,直线CD与直线AB相交于点C,根据下列语句画图(注:可利用三角尺画图,但要保持图形清晰)(1)过点P作PQ∥AB,交CD于点Q;过点P作PR⊥CD,垂足为R;(2)若∠DCB=120°,则∠QPR是多少度?并说明理由.
先化简,再求值:, 其中,.
如图,C、F在BE上,∠A=∠D,AB∥DE,BF=EC.求证:AB=DE.
如图,∠ABC=∠BCD,∠1=∠2,请问图中有几对平行线?并说明理由.
如图,在平面直角坐标系xOy中,⊙C的圆心坐标为(-2,-2),半径为.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为直线AB上一动点.(1)若△POA是等腰三角形,且点P不与点A、B重合,直接写出点P的坐标;(2)当直线PO与⊙C相切时,求∠POA的度数;(3)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系式,并写出t的取值范围.