如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 1 交 y 轴于点 A ,交 x 轴正半轴于点 B ( 4 , 0 ) ,与过 A 点的直线相交于另一点 D ( 3 , 5 2 ) ,过点 D 作 DC ⊥ x 轴,垂足为 C .
(1)求抛物线的表达式;
(2)点 P 在线段 OC 上(不与点 O 、 C 重合),过 P 作 PN ⊥ x 轴,交直线 AD 于 M ,交抛物线于点 N ,连接 CM ,求 ΔPCM 面积的最大值;
(3)若 P 是 x 轴正半轴上的一动点,设 OP 的长为 t ,是否存在 t ,使以点 M 、 C 、 D 、 N 为顶点的四边形是平行四边形?若存在,求出 t 的值;若不存在,请说明理由.
解不等式组
化简-.
如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F. (1)试用含t的式子表示AE、AD的长; (2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由; (3)如图②,连接DE,当t为何值时,△DEF为直角三角形? (4)如图③,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形AEA′D为菱形?
观察下列等式: ①; ②; ③; …… 回答下列问题: (1)仿照上列等式,写出第n个等式:; (2)利用你观察到的规律,化简:; (3)计算:
如图,M、N是正方形ABCD边AB、CD上两动点,连接MN,将四边形BCNM沿MN折叠,使点B落在AD边上点E处、点C落在点F. (1)求证:BE平分∠AEF; (2)求证:C△EDG=2AB(注:C△EDG表示△EDG的周长)