如图,在平面直角坐标系xOy中,⊙C的圆心坐标为(-2,-2),半径为.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,点P为直线AB上一动点.(1)若△POA是等腰三角形,且点P不与点A、B重合,直接写出点P的坐标;(2)当直线PO与⊙C相切时,求∠POA的度数;(3)当直线PO与⊙C相交时,设交点为E、F,点M为线段EF的中点,令PO=t,MO=s,求s与t之间的函数关系式,并写出t的取值范围.
(1)计算: (2)解方程:+=2
已知抛物线经过点A(-1,0),B(3,0),交轴于点C,M为抛物线的顶点,连接MB. (1)求该抛物线的解析式; (2)在轴上是否存在点P满足△PBM是直角三角形,若存在,请求出P点的坐标,若不存在,请说明理由; (3)设Q点的坐标为(8,0),将该抛物线绕点Q旋转180°后,点M的对应点为,求的度数.
如图,AB是半圆O的直径,且AB=,矩形CDEF内接于半圆,点C,D在AB上,点E,F在半圆上. (1)当矩形CDEF相邻两边FC︰CD=︰2时,求弧AF的度数; (2)当四边形CDEF是正方形时: ①试求正方形CDEF的边长; ②若点G,M在⊙O上, GH⊥AB于H,MN⊥AB于N,且△GDH和△MHN都是等腰直角三角形,求HN的长.
如图,两个观察者从A,B两地观测空中C处一个气球,分别测得仰角为45º和60º.已知A,B两地相距30米,延长AB,作CD⊥AD于D,当气球沿着与AB平行的方向飘移到点时,在A处又测得气球的仰角为30º,求CD与的长度.(结果保留根号)
已知在平面直角坐标系中,点A,B的坐标分别为A(2,-5),B(5,1).在同一个坐标系内画出满足下列条件的点(保留画图痕迹),并求出该点的坐标. (1)在轴上找一点C,使得AC+BC的值最小; (2)在轴上找一点D,使得AD-BD的值最大.