如图,∠ABC=∠BCD,∠1=∠2,请问图中有几对平行线?并说明理由.
如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上). (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1; (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2; (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
已知圆锥的底面直径是8,母线长是16,求它的侧面展开图的圆心角与圆锥的全面积。
如图所示,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧), 已知点坐标为(,). (1)求此抛物线的解析式; (2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物 线的对称轴与⊙有怎样的位置关系,并给出证明; (3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的 面积最大?并求出此时点的坐标和的最大面积.
如图所示,⊙的直径,和是它的两条切线,为射线上的动点(不与重合),切⊙于,交于,设. (1)求与的函数关系式; (2)若⊙与⊙外切,且⊙分别与 相切于点,求为何值时⊙半径为1.
“知识改变命运,科技繁荣祖国”.我市中小学每年都要举办一届科技比赛.下图为 我市某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图: (1)该校参加机器人、建模比赛的人数分别是人和人; (2)该校参加科技比赛的总人数是人,电子百拼所在扇形的圆心角的度数是°,并把条形统计图补充完整; (3)从全市中小学参加科技比赛选手中随机抽取80人,其中有32人获奖. 2011年我市中小学参加科技比赛人数共有2485人,请你估算2011年参加科技比赛的获奖人数约是多少人?