高中数学

已知函数.
(1)当时,求函数的零点;
(2)若函数有零点,求实数a的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)若函数的图象与x轴无交点,求a的取值范围;
(2) 若函数在[-1,1]上存在零点,求a的取值范围;
(3)设函数,当时,若对任意的,总存在,使得,求b的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

设函数在点处的切线方程为.
(1)求实数的值;
(2)求证:对任意实数,函数有且仅有两个零点.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数).
(1)若函数有两个零点,求的取值范围;
(2)若函数在区间上各有一个零点,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数).
(Ⅰ)若函数在定义域内单调递增,求实数的取值范围;
(Ⅱ)若,且关于的方程上恰有两个不等的实根,求实数的取值范围;
(Ⅲ)设各项为正数的数列满足),求证:.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知函数
(1)若直线过点,并且与曲线相切,求直线的方程;
(2)设函数上有且只有一个零点,求的取值范围。(其中为自然对数的底数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分15分)函数
(1)若,试讨论函数的单调性;
(2)若,试讨论的零点的个数;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)已知函数,对任意的,满足,其中为常数.
(1)若的图像在处切线过点,求的值;
(2)已知,求证:
(3)当存在三个不同的零点时,求的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数其中e表示自然对数的底数.
(1)若g(x)=m有零点,求m的取值范围;
(2)确定t的取值范围,使得g(x)-f(x)=0有两个相异实根.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数
(1)讨论的单调性;
(2)证明:当时,
(3)若函数有两个零点,比较的大小,并证明你的结论。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数为常数且)满足 且方程有等根.
(1)求的解析式;
(2)设的反函数为恒成立,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知函数,现将的图像向右平移一个单位,再向上平移一个单位得到函数的图像.
(1)求函数的解析式;
(2)函数的图像与函数的图像在上至少有一个交点,求实数的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)定义在上的函数及二次函数满足:
,,且的最小值是
(Ⅰ)求的解析式;
(Ⅱ)若对于,均有成立,求实数的取值范围;
(Ⅲ)设讨论方程的解的个数情况.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知定义在R上的奇函数 满足 ,且 时,,给出下列结论:
; ②函数上是增函数;
③函数的图像关于直线x=1对称;
④若 ,则关于x的方程在[-8,16]上的所有根之和为12.
则其中正确的命题为_________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知定义在区间上的函数,其中常数
(1)若函数分别在区间上单调,试求的取值范围;
(2)当时,方程有四个不相等的实根
①证明:
②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学不定方程和方程组解答题