初中数学

已知抛物线 c 1 的顶点为 A ( 1 , 4 ) ,与 y 轴的交点为 D ( 0 , 3 )

(1)求 c 1 的解析式;

(2)若直线 l 1 : y = x + m c 1 仅有唯一的交点,求 m 的值;

(3)若抛物线 c 1 关于 y 轴对称的抛物线记作 c 2 ,平行于 x 轴的直线记作 l 2 : y = n .试结合图形回答:当 n 为何值时, l 2 c 1 c 2 共有:①两个交点;②三个交点;③四个交点;

(4)若 c 2 x 轴正半轴交点记作 B ,试在 x 轴上求点 P ,使 ΔPAB 为等腰三角形.

来源:2017年湖南省张家界市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于 30 ° ,那么它所对的直角边等于斜边的一半.即:如图1,在 Rt Δ ABC 中, ACB = 90 ° ABC = 30 ° ,则: AC = 1 2 AB

探究结论:小明同学对以上结论作了进一步研究.

(1)如图1,连接 AB 边上中线 CE ,由于 CE = 1 2 AB ,易得结论:① ΔACE 为等边三角形;② BE CE 之间的数量关系为  

(2)如图2,点 D 是边 CB 上任意一点,连接 AD ,作等边 ΔADE ,且点 E ACB 的内部,连接 BE .试探究线段 BE DE 之间的数量关系,写出你的猜想并加以证明.

(3)当点 D 为边 CB 延长线上任意一点时,在(2)条件的基础上,线段 BE DE 之间存在怎样的数量关系?请直接写出你的结论  

拓展应用:如图3,在平面直角坐标系 xOy 中,点 A 的坐标为 ( 3 1 ) ,点 B x 轴正半轴上的一动点,以 AB 为边作等边 ΔABC ,当 C 点在第一象限内,且 B ( 2 , 0 ) 时,求 C 点的坐标.

来源:2018年山东省日照市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD AB / / DC CB AB AB = 16 cm BC = 6 cm CD = 8 cm ,动点 P 从点 D 开始沿 DA 边匀速运动,动点 Q 从点 A 开始沿 AB 边匀速运动,它们的运动速度均为 2 cm / s .点 P 和点 Q 同时出发,以 QA QP 为边作平行四边形 AQPE ,设运动的时间为 t ( s ) 0 < t < 5

根据题意解答下列问题:

(1)用含 t 的代数式表示 AP

(2)设四边形 CPQB 的面积为 S ( c m 2 ) ,求 S t 的函数关系式;

(3)当 QP BD 时,求 t 的值;

(4)在运动过程中,是否存在某一时刻 t ,使点 E ABD 的平分线上?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年山东省青岛市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

有公共顶点 A 的正方形 ABCD 与正方形 AEGF 按如图1所示放置,点 E F 分别在边 AB AD 上,连接 BF DE M BF 的中点,连接 AM DE 于点 N

【观察猜想】

(1)线段 DE AM 之间的数量关系是   ,位置关系是   

【探究证明】

(2)将图1中的正方形 AEGF 绕点 A 顺时针旋转 45 ° ,点 G 恰好落在边 AB 上,如图2,其他条件不变,线段 DE AM 之间的关系是否仍然成立?并说明理由.

来源:2021年山东省烟台市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,直线 l : y = kx + b ( k < 0 ) 与函数 y = 4 x ( x > 0 ) 的图象相交于 A C 两点,与 x 轴相交于 T 点,过 A C 两点作 x 轴的垂线,垂足分别为 B D ,过 A C 两点作 y 轴的垂线,垂足分别为 E F ;直线 AE CD 相交于点 P ,连接 DE .设 A C 两点的坐标分别为 ( a , 4 a ) ( c , 4 c ) ,其中 a > c > 0

(1)如图①,求证: EDP = ACP

(2)如图②,若 A D E C 四点在同一圆周上,求 k 的值;

(3)如图③,已知 c = 1 ,且点 P 在直线 BF 上,试问:在线段 AT 上是否存在点 M ,使得 OM AM ?如存在,请求出点 M 的坐标;若不存在,请说明理由.

来源:2017年湖北省黄石市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知等边 ΔABC 的边长为8,点 P AB 边上的一个动点(与点 A B 不重合).直线 l 是经过点 P 的一条直线,把 ΔABC 沿直线 l 折叠,点 B 的对应点是点 B '

(1)如图1,当 PB = 4 时,若点 B ' 恰好在 AC 边上,则 AB ' 的长度为         

(2)如图2,当 PB = 5 时,若直线 l / / AC ,则 BB ' 的长度为       

(3)如图3,点 P AB 边上运动过程中,若直线 l 始终垂直于 AC ΔACB ' 的面积是否变化?若变化,说明理由;若不变化,求出面积;

(4)当 PB = 6 时,在直线 l 变化过程中,求 ΔACB ' 面积的最大值.

来源:2019年江苏省扬州市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,点 A 坐标为 ( 2 , 0 ) ,以 OA 为边在第一象限内作等边 ΔOAB ,点 C x 轴上一动点,且在点 A 右侧,连接 BC ,以 BC 为边在第一象限内作等边 ΔBCD ,连接 AD BC E

(1)①直接回答: ΔOBC ΔABD 全等吗?

②试说明:无论点 C 如何移动, AD 始终与 OB 平行;

(2)当点 C 运动到使 A C 2 = AE · AD 时,如图2,经过 O B C 三点的抛物线为 y 1 .试问: y 1 上是否存在动点 P ,使 ΔBEP 为直角三角形且 BE 为直角边?若存在,求出点 P 坐标;若不存在,说明理由;

(3)在(2)的条件下,将 y 1 沿 x 轴翻折得 y 2 ,设 y 1 y 2 组成的图形为 M ,函数 y = 3 x + 3 m 的图象 l M 有公共点.试写出: l M 的公共点为3个时, m 的取值.

来源:2017年四川省达州市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线 y = - 1 3 x 2 + 2 3 3 x + 3 x 轴交于 A B 两点(点 A 在点 B 左侧),与 y 轴交于点 C ,抛物线的顶点为点 E

(1)判断 ΔABC 的形状,并说明理由;

(2)经过 B C 两点的直线交抛物线的对称轴于点 D ,点 P 为直线 BC 上方抛物线上的一动点,当 ΔPCD 的面积最大时, Q 从点 P 出发,先沿适当的路径运动到抛物线的对称轴上点 M 处,再沿垂直于抛物线对称轴的方向运动到 y 轴上的点 N 处,最后沿适当的路径运动到点 A 处停止.当点 Q 的运动路径最短时,求点 N 的坐标及点 Q 经过的最短路径的长;

(3)如图2,平移抛物线,使抛物线的顶点 E 在射线 AE 上移动,点 E 平移后的对应点为点 E ' ,点 A 的对应点为点 A ' ,将 ΔAOC 绕点 O 顺时针旋转至△ A 1 O C 1 的位置,点 A C 的对应点分别为点 A 1 C 1 ,且点 A 1 恰好落在 AC 上,连接 C 1 A ' C 1 E ' ,△ A ' C 1 E ' 是否能为等腰三角形?若能,请求出所有符合条件的点 E ' 的坐标;若不能,请说明理由.

来源:2016年重庆市中考数学试卷(a卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(a卷)
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

(1)数学理解:如图①, ΔABC 是等腰直角三角形,过斜边 AB 的中点 D 作正方形 DECF ,分别交 BC AC 于点 E F ,求 AB BE AF 之间的数量关系;

(2)问题解决:如图②,在任意直角 ΔABC 内,找一点 D ,过点 D 作正方形 DECF ,分别交 BC AC 于点 E F ,若 AB = BE + AF ,求 ADB 的度数;

(3)联系拓广:如图③,在(2)的条件下,分别延长 ED FD ,交 AB 于点 M N ,求 MN AM BN 的数量关系.

来源:2019年贵州省贵阳市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图1,已知 ABCD AB / / x 轴, AB = 6 ,点 A 的坐标为 ( 1 , 4 ) ,点 D 的坐标为 ( 3 , 4 ) ,点 B 在第四象限,点 P ABCD 边上的一个动点.

(1)若点 P 在边 BC 上, PD = CD ,求点 P 的坐标.

(2)若点 P 在边 AB AD 上,点 P 关于坐标轴对称的点 Q 落在直线 y = x 1 上,求点 P 的坐标.

(3)若点 P 在边 AB AD CD 上,点 G AD y 轴的交点,如图2,过点 P y 轴的平行线 PM ,过点 G x 轴的平行线 GM ,它们相交于点 M ,将 ΔPGM 沿直线 PG 翻折,当点 M 的对应点落在坐标轴上时,求点 P 的坐标.(直接写出答案)

来源:2017年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.

(1)概念理解:

如图1,在 ΔABC 中, AC = 6 BC = 3 ACB = 30 ° ,试判断 ΔABC 是否是”等高底”三角形,请说明理由.

(2)问题探究:

如图2, ΔABC 是“等高底”三角形, BC 是”等底”,作 ΔABC 关于 BC 所在直线的对称图形得到△ A ' BC ,连接 AA ' 交直线 BC 于点 D .若点 B 是△ AA ' C 的重心,求 AC BC 的值.

(3)应用拓展:

如图3,已知 l 1 / / l 2 l 1 l 2 之间的距离为2.“等高底” ΔABC 的“等底” BC 在直线 l 1 上,点 A 在直线 l 2 上,有一边的长是 BC 2 倍.将 ΔABC 绕点 C 按顺时针方向旋转 45 ° 得到△ A ' B ' C A ' C 所在直线交 l 2 于点 D .求 CD 的值.

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动. ΔABC 是边长为2的等边三角形, E AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连接 CF

(1)如图1,当点 E 在线段 AC 上时, EF BC 相交于点 D ,小亮发现有两个三角形全等,请你找出来,并证明.

(2)当点 E 在线段 AC 上运动时,点 F 也随着运动,若四边形 ABFC 的面积为 7 4 3 ,求 AE 的长.

(3)如图2,当点 E AC 的延长线上运动时, CF BE 相交于点 D ,请你探求 ΔECD 的面积 S 1 ΔDBF 的面积 S 2 之间的数量关系.并说明理由.

(4)如图2,当 ΔECD 的面积 S 1 = 3 6 时,求 AE 的长.

来源:2018年江苏省连云港市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,将等腰直角三角形纸片 ABC 对折,折痕为 CD .展平后,再将点 B 折叠在边 AC 上(不与 A C 重合),折痕为 EF ,点 B AC 上的对应点为 M ,设 CD EM 交于点 P ,连接 PF .已知 BC = 4

(1)若 M AC 的中点,求 CF 的长;

(2)随着点 M 在边 AC 上取不同的位置,

ΔPFM 的形状是否发生变化?请说明理由;

②求 ΔPFM 的周长的取值范围.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学三角形解答题