问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于 ,那么它所对的直角边等于斜边的一半.即:如图1,在 中, , ,则: .
探究结论:小明同学对以上结论作了进一步研究.
(1)如图1,连接 边上中线 ,由于 ,易得结论:① 为等边三角形;② 与 之间的数量关系为 .
(2)如图2,点 是边 上任意一点,连接 ,作等边 ,且点 在 的内部,连接 .试探究线段 与 之间的数量关系,写出你的猜想并加以证明.
(3)当点 为边 延长线上任意一点时,在(2)条件的基础上,线段 与 之间存在怎样的数量关系?请直接写出你的结论 .
拓展应用:如图3,在平面直角坐标系 中,点 的坐标为 , ,点 是 轴正半轴上的一动点,以 为边作等边 ,当 点在第一象限内,且 时,求 点的坐标.
推荐套卷