在数学兴趣小组活动中,小亮进行数学探究活动. ΔABC 是边长为2的等边三角形, E 是 AC 上一点,小亮以 BE 为边向 BE 的右侧作等边三角形 BEF ,连接 CF .
(1)如图1,当点 E 在线段 AC 上时, EF 、 BC 相交于点 D ,小亮发现有两个三角形全等,请你找出来,并证明.
(2)当点 E 在线段 AC 上运动时,点 F 也随着运动,若四边形 ABFC 的面积为 7 4 3 ,求 AE 的长.
(3)如图2,当点 E 在 AC 的延长线上运动时, CF 、 BE 相交于点 D ,请你探求 ΔECD 的面积 S 1 与 ΔDBF 的面积 S 2 之间的数量关系.并说明理由.
(4)如图2,当 ΔECD 的面积 S 1 = 3 6 时,求 AE 的长.
如图,直线的解析式为,且与轴交于点,直线经过点(4,0)、(3,),直线、交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;
如图,在直角中,∠C=90°,DC = 2,∠CAB的平分线AD交BC于点D,DE垂直平分AB.求∠B的度数和DB的长.
先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a +b)( a +b)= 2a2 +3ab +b2,就可以用图1的面积关系来说明.(1)根据图2写出一个等式 ;(2)已知等式:(x +1)(x +3)=x2 + 4x + 3,请你画出一个相应的几何图形加以说明(模仿图1或图2画出图形即可).
如图,点是的中点,,.求证:△≌△.
先化简,再求值:,其中;