如图,将等腰直角三角形纸片 ABC 对折,折痕为 CD .展平后,再将点 B 折叠在边 AC 上(不与 A 、 C 重合),折痕为 EF ,点 B 在 AC 上的对应点为 M ,设 CD 与 EM 交于点 P ,连接 PF .已知 BC = 4 .
(1)若 M 为 AC 的中点,求 CF 的长;
(2)随着点 M 在边 AC 上取不同的位置,
① ΔPFM 的形状是否发生变化?请说明理由;
②求 ΔPFM 的周长的取值范围.
如图,已知抛物线 y = a x 2 + 8 5 x + c 与 x 轴交于 A , B 两点,与 y 轴交于点 C ,且 A ( 2 , 0 ) , C ( 0 , − 4 ) ,直线 l : y = − 1 2 x − 4 与 x 轴交于点 D ,点 P 是抛物线 y = a x 2 + 8 5 x + c 上的一动点,过点 P 作 PE ⊥ x 轴,垂足为 E ,交直线 l 于点 F .
(1)试求该抛物线表达式;
(2)如图(1),当点 P 在第三象限,四边形 PCOF 是平行四边形,求 P 点的坐标;
(3)如图(2),过点 P 作 PH ⊥ y 轴,垂足为 H ,连接 AC .
①求证: ΔACD 是直角三角形;
②试问当 P 点横坐标为何值时,使得以点 P 、 C 、 H 为顶点的三角形与 ΔACD 相似?
设 a 、 b 是任意两个实数,用 max { a , b } 表示 a 、 b 两数中较大者,例如: max { − 1 , − 1 } = − 1 , max { 1 , 2 } = 2 , max { 4 , 3 } = 4 ,参照上面的材料,解答下列问题:
(1) max { 5 , 2 } = , max { 0 , 3 } = ;
(2)若 max { 3 x + 1 , − x + 1 } = − x + 1 ,求 x 的取值范围;
(3)求函数 y = x 2 − 2 x − 4 与 y = − x + 2 的图象的交点坐标,函数 y = x 2 − 2 x − 4 的图象如图所示,请你在图中作出函数 y = − x + 2 的图象,并根据图象直接写出 max { − x + 2 , x 2 − 2 x − 4 } 的最小值.
如图, AB 是 ⊙ O 的弦, BC 切 ⊙ O 于点 B , AD ⊥ BC ,垂足为 D , OA 是 ⊙ O 的半径,且 OA = 3 .
(1)求证: AB 平分 ∠ OAD ;
(2)若点 E 是优弧 AEB ̂ 上一点,且 ∠ AEB = 60 ° ,求扇形 OAB 的面积.(计算结果保留 π )
如图所示, C 城市在 A 城市正东方向,现计划在 A 、 C 两城市间修建一条高速公路(即线段 AC ) ,经测量,森林保护区的中心 P 在 A 城市的北偏东 60 ° 方向上,在线段 AC 上距 A 城市 120 km 的 B 处测得 P 在北偏东 30 ° 方向上,已知森林保护区是以点 P 为圆心, 100 km 为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据: 3 ≈ 1 . 73 )
某工厂有甲种原料 130 kg ,乙种原料 144 kg .现用这两种原料生产出 A , B 两种产品共30件.已知生产每件 A 产品需甲种原料 5 kg ,乙种原料 4 kg ,且每件 A 产品可获利700元;生产每件 B 产品需甲种原料 3 kg ,乙种原料 6 kg ,且每件 B 产品可获利900元.设生产 A 产品 x 件(产品件数为整数件),根据以上信息解答下列问题:
(1)生产 A , B 两种产品的方案有哪几种;
(2)设生产这30件产品可获利 y 元,写出 y 关于 x 的函数解析式,写出(1)中利润最大的方案,并求出最大利润.