初中数学

已知正方形 ABCD AC BD 交于 O 点,点 M 在线段 BD 上,作直线 AM 交直线 DC E ,过 D DH AE H ,设直线 DH AC N

(1)如图1,当 M 在线段 BO 上时,求证: MO = NO

(2)如图2,当 M 在线段 OD 上,连接 NE ,当 EN / / BD 时,求证: BM = AB

(3)在图3,当 M 在线段 OD 上,连接 NE ,当 NE EC 时,求证: A N 2 = NC AC

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,抛物线 y = m x 2 16 mx + 48 m ( m > 0 ) x 轴交于 A B 两点(点 B 在点 A 左侧),与 y 轴交于点 C ,点 D 是抛物线上的一个动点,且位于第四象限,连接 OD BD AC AD ,延长 AD y 轴于点 E

(1)若 ΔOAC 为等腰直角三角形,求 m 的值;

(2)若对任意 m > 0 C E 两点总关于原点对称,求点 D 的坐标(用含 m 的式子表示);

(3)当点 D 运动到某一位置时,恰好使得 ODB = OAD ,且点 D 为线段 AE 的中点,此时对于该抛物线上任意一点 P ( x 0 y 0 ) 总有 n + 1 6 4 3 m y 0 2 12 3 y 0 50 成立,求实数 n 的最小值.

来源:2017年湖南省长沙市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

【问题】

如图1,在Rt△ ABC中,∠ ACB=90°, ACBC,过点 C作直线 l平行于 AB.∠ EDF=90°,点 D在直线 l上移动,角的一边 DE始终经过点 B,另一边 DFAC交于点 P,研究 DPDB的数量关系.

【探究发现】

(1)如图2,某数学兴趣小组运用"从特殊到一般"的数学思想,发现当点 D移动到使点 P与点 C重合时,通过推理就可以得到 DPDB,请写出证明过程;

【数学思考】

(2)如图3,若点 PAC上的任意一点(不含端点 AC),受(1)的启发,这个小组过点 DDGCDBC于点 G,就可以证明 DPDB,请完成证明过程;

【拓展引申】

(3)如图4,在(1)的条件下, MAB边上任意一点(不含端点 AB), N是射线 BD上一点,且 AMBN,连接 MNBC交于点 Q,这个数学兴趣小组经过多次取 M点反复进行实验,发现点 M在某一位置时 BQ的值最大.若 ACBC=4,请你直接写出 BQ的最大值.

来源:2019年内蒙古赤峰市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,已知 AC BD O 的两条直径,连接 AB BC OE AB 于点 E ,点 F 是半径 OC 的中点,连接 EF

(1)设 O 的半径为1,若 BAC = 30 ° ,求线段 EF 的长.

(2)连接 BF DF ,设 OB EF 交于点 P

①求证: PE = PF

②若 DF = EF ,求 BAC 的度数.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD AB / / DC CB AB AB = 16 cm BC = 6 cm CD = 8 cm ,动点 P 从点 D 开始沿 DA 边匀速运动,动点 Q 从点 A 开始沿 AB 边匀速运动,它们的运动速度均为 2 cm / s .点 P 和点 Q 同时出发,以 QA QP 为边作平行四边形 AQPE ,设运动的时间为 t ( s ) 0 < t < 5

根据题意解答下列问题:

(1)用含 t 的代数式表示 AP

(2)设四边形 CPQB 的面积为 S ( c m 2 ) ,求 S t 的函数关系式;

(3)当 QP BD 时,求 t 的值;

(4)在运动过程中,是否存在某一时刻 t ,使点 E ABD 的平分线上?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年山东省青岛市中考数学试卷
  • 更新:2021-05-17
  • 题型:未知
  • 难度:未知

如图1,已知四边形 ABCD 是矩形,点 E BA 的延长线上, AE = AD EC BD 相交于点 G ,与 AD 相交于点 F AF = AB

(1)求证: BD EC

(2)若 AB = 1 ,求 AE 的长;

(3)如图2,连接 AG ,求证: EG - DG = 2 AG

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形, AD = AC AD AC E AB 的中点, F AC 延长线上一点.

(1)若 ED EF ,求证: ED = EF

(2)在(1)的条件下,若 DC 的延长线与 FB 交于点 P ,试判定四边形 ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);

(3)若 ED = EF ED EF 垂直吗?若垂直给出证明,若不垂直说明理由.

来源:2017年山东省泰安市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知二次函数的图象过点,点不重合)是图象上的一点,直线过点且平行于轴.于点,点

(1)求二次函数的解析式;

(2)求证:点在线段的中垂线上;

(3)设直线交二次函数的图象于另一点于点,线段的中垂线交于点,求的值;

(4)试判断点与以线段为直径的圆的位置关系.

来源:2019年四川省雅安市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点,与轴交于点,且

(1)求抛物线的解析式;

(2)若是抛物线上的两点,当时,均有,求的取值范围;

(3)抛物线上一点,直线轴交于点,动点在线段上,当时,求点的坐标.

来源:2019年山东省德州市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx 2 x 轴交于 A B 两点,与 y 轴交于 C 点,已知 A ( 3 , 0 ) ,且 M ( 1 , 8 3 ) 是抛物线上另一点.

(1)求 a b 的值;

(2)连接 AC ,设点 P y 轴上任一点,若以 P A C 三点为顶点的三角形是等腰三角形,求 P 点的坐标;

(3)若点 N x 轴正半轴上且在抛物线内的一动点(不与 O A 重合),过点 N NH / / AC 交抛物线的对称轴于 H 点.设 ON = t ΔONH 的面积为 S ,求 S t 之间的函数关系式.

来源:2017年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程 x 2 5 x + 2 = 0 ,操作步骤是:

第一步:根据方程的系数特征,确定一对固定点 A ( 0 , 1 ) B ( 5 , 2 )

第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点 A ,另一条直角边恒过点 B

第三步:在移动过程中,当三角板的直角顶点落在 x 轴上点 C 处时,点 C 的横坐标 m 即为该方程的一个实数根(如图 1 )

第四步:调整三角板直角顶点的位置,当它落在 x 轴上另一点 D 处时,点 D 的横坐标 n 即为该方程的另一个实数根.

(1)在图2中,按照“第四步”的操作方法作出点 D (请保留作出点 D 时直角三角板两条直角边的痕迹);

(2)结合图1,请证明“第三步”操作得到的 m 就是方程 x 2 5 x + 2 = 0 的一个实数根;

(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程 a x 2 + bx + c = 0 ( a 0 , b 2 4 ac 0 ) 的实数根,请你直接写出一对固定点的坐标;

(4)实际上,(3)中的固定点有无数对,一般地,当 m 1 n 1 m 2 n 2 a b c 之间满足怎样的关系时,点 P ( m 1 n 1 ) Q ( m 2 n 2 ) 就是符合要求的一对固定点?

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在边长为1的正方形 ABCD 中,动点 E F 分别在边 AB CD 上,将正方形 ABCD 沿直线 EF 折叠,使点 B 的对应点 M 始终落在边 AD 上(点 M 不与点 A D 重合),点 C 落在点 N 处, MN CD 交于点 P ,设 BE = x

(1)当 AM = 1 3 时,求 x 的值;

(2)随着点 M 在边 AD 上位置的变化, ΔPDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;

(3)设四边形 BEFC 的面积为 S ,求 S x 之间的函数表达式,并求出 S 的最小值.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积 S 1 S 2 S 3 之间的关系问题”进行了以下探究:

类比探究

(1)如图2,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为斜边向外侧作 Rt Δ ABD Rt Δ ACE Rt Δ BCF ,若 1 = 2 = 3 ,则面积 S 1 S 2 S 3 之间的关系式为      

推广验证

(2)如图3,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为边向外侧作任意 ΔABD ΔACE ΔBCF ,满足 1 = 2 = 3 D = E = F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;

拓展应用

(3)如图4,在五边形 ABCDE 中, A = E = C = 105 ° ABC = 90 ° AB = 2 3 DE = 2 ,点 P AE 上, ABP = 30 ° PE = 2 ,求五边形 ABCDE 的面积.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知:如图,在菱形 ABCD 中,点 E F 分别在边 BC CD 上, BE = FD AF 的延长线交 BC 的延长线于点 H AE 的延长线交 DC 的延长线于点 G

[小题1]求证: ΔAFD ΔGAD

[小题2]如果 D F 2 = CF · CD ,求证: BE = CH

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC O ΔABC 的外接圆, BO 的延长线交边 AC 于点 D

[小题1]求证: BAC = 2 ABD

[小题2]当 ΔBCD 是等腰三角形时,求 BCD 的大小;

[小题3]当 AD = 2 CD = 3 时,求边 BC 的长.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学三角形解答题