如图,抛物线y=mx2-52mx-4与x轴交于A(x1,0),B(x2,0)两点,与y轴交于点C,且x2-x1=112.
(1)求抛物线的解析式;
(2)若P(x3,y3),Q(x4,y4)是抛物线上的两点,当a⩽x3⩽a+2,x4⩾92时,均有y3⩽y4,求a的取值范围;
(3)抛物线上一点D(1,-5),直线BD与y轴交于点E,动点M在线段BD上,当∠BDC=∠MCE时,求点M的坐标.
某商厦将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台. (1)假设每台冰箱降价50x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围) (2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元? (3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
某校为了解九年级男生1000米长跑的成绩,从中随机抽取了50名男生进行测试,根据测试评分标准,将他们的得分进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表和扇形统计图.
(1)试直接写出x、y、m、n的值; (2)求表示得分为C等的扇形的圆心角的度数; (3)如果该校九年级共有男生200名,试估计这200名男生中成绩达到A等和B等的人数共有多少人?
如图,有一段斜坡BC长为10米,坡角∠CBD=12°,为方便残疾人的轮椅车通行,现准备把坡角降为5°. (1)求坡高CD; (2)求斜坡新起点A与原起点B的距离(精确到0.1米).
将背面完全相同,正面上分别写有数字1、2、3的三张卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数,将形状、大小完全相同,分别标有数字1、2的两个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差. (1)请你用画树状图或列表的方法,求这两数差为0的概率; (2)小明与小华做游戏,规则是:若这两数的差为正数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.
如图,四边形ABCD中,AB∥CD,AC平分∠BAD,过C作CE∥AD交AB于E. (1)求证:四边形AECD是菱形; (2)若点E是AB的中点,试判断△ABC的形状,并说明理由.