如图,在边长为1的正方形 ABCD 中,动点 E 、 F 分别在边 AB 、 CD 上,将正方形 ABCD 沿直线 EF 折叠,使点 B 的对应点 M 始终落在边 AD 上(点 M 不与点 A 、 D 重合),点 C 落在点 N 处, MN 与 CD 交于点 P ,设 BE = x .
(1)当 AM = 1 3 时,求 x 的值;
(2)随着点 M 在边 AD 上位置的变化, ΔPDM 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;
(3)设四边形 BEFC 的面积为 S ,求 S 与 x 之间的函数表达式,并求出 S 的最小值.
已知数列满足,,,其中. (Ⅰ)求证:数列为等比数列; (Ⅱ)求数列的前项和.
如图,在四棱锥中中,底面为菱形,,,点在线段上,且,为的中点. (Ⅰ)求证:平面; (Ⅱ)(只文科生做)若平面平面,求三棱锥的体积; (只理科生做)若平面平面,求二面角的平面角的正切值.
在△ABC中,内角A,B,C所对边长分别为a, b,c.,,. (Ⅰ)求的最大值及的取值范围; (Ⅱ)求函数的最小值.
(本小题满分12分)已知函数。 (1)若函数满足,且在定义域内恒成立,求实数的取值范围; (2)若函数在定义域上是单调函数,求实数的取值范围; (3)当时,试比较与的大小。
(本小题满分12分)已知函数, (1)若函数是奇函数,求的值; (2)若不等式在上恒成立,求实数的取值范围.