如图,四边形 ABCD 是平行四边形, AD = AC , AD ⊥ AC , E 是 AB 的中点, F 是 AC 延长线上一点.
(1)若 ED ⊥ EF ,求证: ED = EF ;
(2)在(1)的条件下,若 DC 的延长线与 FB 交于点 P ,试判定四边形 ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);
(3)若 ED = EF , ED 与 EF 垂直吗?若垂直给出证明,若不垂直说明理由.
如图所示,一条河流两岸是平行的.当小船行驶到河中 E 点时,与两岸码头 B , D 成 64 ∘ 角;当小船行驶到河中 F 点时,看 B 点和 D 点的视线 FB , FD 恰好有 ∠ 1 = ∠ 2 , ∠ 3 = ∠ 4 的关系.你能说出此时点 F 与码头 B , D 所形成的角 ∠ BFD 的度数吗?
如图,已知 ∠ A = ∠ 1 = 180 ∘ - ∠ B , ∠ 2 = 45 ∘ , ∠ 3 = 75 ∘ , FG 平分 ∠ DFE .求 ∠ CFG 的度数.
如图, CD / / EF , ∠ 1 + ∠ 2 = ∠ ABC ,求证: AB / / GF .
两条直线相交,四个交角中的一个锐角(或一个直角)称为这两条直线的“夹角”(如图),如果在平面上画 L 条直线,要求它们两两相交,并且“夹角”只能是 15 ° , 30 ° , 45 ° , 60 ° , 75 ° , 90 ° 其中之一,问:
(1) L 的最大值是什么?
(2)当 L 取最大值时,问所有的“夹角”的和是多少?
在一个平面上有 2017 条直线,最多能将这一平面分成多少个部分.