两条直线相交,四个交角中的一个锐角(或一个直角)称为这两条直线的“夹角”(如图),如果在平面上画 L 条直线,要求它们两两相交,并且“夹角”只能是 15 ° , 30 ° , 45 ° , 60 ° , 75 ° , 90 ° 其中之一,问:
(1) L 的最大值是什么?
(2)当 L 取最大值时,问所有的“夹角”的和是多少?
已知:,设,,,求A、B、C的值,并且比较它们大小.
已知a、b、c、d四条线段依次成比例,其中a=3cm,b=(x﹣1)cm,c=5cm,d=(x+1)cm.求x的值.
(1)已知a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长. (2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段 a和b的比例中项.求线段c的长. (3)已知y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4,x=2时,y=5. 求:①y与x之间的函数关系式;②当x=4时,求y的值.
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形?
如图,在菱形ABCD中,AB=2,,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN. (1)求证:四边形AMDN是平行四边形; (2)填空:①当AM的值为时,四边形AMDN是矩形; ②当AM的值为时,四边形AMDN是菱形。