如图,抛物线 y = m x 2 − 16 mx + 48 m ( m > 0 ) 与 x 轴交于 A , B 两点(点 B 在点 A 左侧),与 y 轴交于点 C ,点 D 是抛物线上的一个动点,且位于第四象限,连接 OD 、 BD 、 AC 、 AD ,延长 AD 交 y 轴于点 E .
(1)若 ΔOAC 为等腰直角三角形,求 m 的值;
(2)若对任意 m > 0 , C 、 E 两点总关于原点对称,求点 D 的坐标(用含 m 的式子表示);
(3)当点 D 运动到某一位置时,恰好使得 ∠ ODB = ∠ OAD ,且点 D 为线段 AE 的中点,此时对于该抛物线上任意一点 P ( x 0 , y 0 ) 总有 n + 1 6 ⩾ − 4 3 m y 0 2 − 12 3 y 0 − 50 成立,求实数 n 的最小值.
如图,九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,人的眼睛E、标杆顶点C和旗杆顶点A在同一直线,求旗杆AB的高度.
如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.(1)指定路灯的位置(用点P表示);(2)在图中画出表示大树高的线段;(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.
如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.
(1)2x2-9x+8=0(用公式法) (2)3x2-4x-6=0(配方法解) (3)(x-2)2=(2x+3)2(用合适的方法) (4)(5x-1)2-3(5x-1)=0(用合适的方法)
如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.