某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:
(1)本次抽取样本容量为 ,扇形统计图中A类所对的圆心角是 度;
(2)请补全统计图;
(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?
如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D, (1)求证:DP=DQ; (2)过P作PE⊥AC于E,若BC=4,求DE的长
如图,在△ABC中,AB=AC,AD和BE是△ABC的高,它们相交于点H,且AE=BE,求证:AH=2BD
如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P, (1)求∠BPE的度数. (2)若BF⊥AE于点F,试判断BP与PF的数量关系.
如图,A(-2,0),B(0,4)以B点为直角顶点在第二象限作等腰直角△ABC (1)求C点的坐标; (2)如图2点E为y轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过M作MN⊥x轴于N,求OE-MN的值。
如图在△AFD和△CEB中,点A,E,F,C在同一条直线上,有下面四个论断: (1)AD=CB,(2)AE=CF,(3)∠B=∠D,(4)AD∥BC.请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.