初中数学
数与式
有理数
正数和负数
有理数
数轴
相反数
绝对值
非负数的性质:绝对值
倒数
有理数大小比较
有理数的加法
有理数的减法
有理数的加减混合运算
有理数的乘法
有理数的除法
有理数的乘方
非负数的性质:偶次方
有理数的混合运算
近似数和有效数字
科学记数法—表示较大的数
科学记数法—表示较小的数
科学记数法—原数
科学记数法与有效数字
计算器—基础知识
计算器—有理数
数学常识
用数字表示事件
尾数特征
无理数与实数
平方根
算术平方根
非负数的性质:算术平方根
立方根
计算器—数的开方
无理数
实数
实数的性质
实数与数轴
实数大小比较
估算无理数的大小
实数的运算
分数指数幂
代数式
代数式
列代数式
代数式求值
同类项
合并同类项
去括号与添括号
规律型:数字的变化类
规律型:图形的变化类
整式
整式
单项式
多项式
整式的加减
整式的加减—化简求值
同底数幂的乘法
幂的乘方与积的乘方
同底数幂的除法
单项式乘单项式
单项式乘多项式
多项式乘多项式
完全平方公式
完全平方公式的几何背景
完全平方式
平方差公式
平方差公式的几何背景
整式的除法
整式的混合运算
整式的混合运算—化简求值
零指数
负整数指数幂
因式分解
因式分解的意义
公因式
因式分解-提公因式法
因式分解-运用公式法
提公因式法与公式法的综合运用
因式分解-分组分解法
因式分解-十字相乘法等
实数范围内分解因式
因式分解的应用
分式
分式的定义
分式有意义的条件
分式的值为零的条件
分式的值
分式的基本性质
约分
通分
最简分式
最简公分母
分式的乘除法
分式的加减法
分式的混合运算
分式的化简求值
零指数幂
负整数指数幂
列代数式(分式)
二次根式
二次根式的定义
二次根式有意义的条件
二次根式的性质与化简
最简二次根式
二次根式的乘除法
分母有理化
同类二次根式
二次根式的加减法
二次根式的混合运算
二次根式的化简求值
二次根式的应用
方程与不等式
一元一次方程
方程的定义
方程的解
等式的性质
一元一次方程的定义
一元一次方程的解
解一元一次方程
含绝对值符号的一元一次方程
同解方程
由实际问题抽象出一元一次方程
一元一次方程的应用
二元一次方程组
二元一次方程的定义
二元一次方程的解
解二元一次方程
由实际问题抽象出二元一次方程
二元一次方程的应用
二元一次方程组的定义
二元一次方程组的解
解二元一次方程组
由实际问题抽象出二元一次方程组
二元一次方程组的应用
同解方程组
解三元一次方程组
三元一次方程组的应用
一元二次方程
一元二次方程的定义
一元二次方程的一般形式
一元二次方程的解
估算一元二次方程的近似解
解一元二次方程-直接开平方法
解一元二次方程-配方法
解一元二次方程-公式法
解一元二次方程-因式分解法
换元法解一元二次方程
根的判别式
根与系数的关系
由实际问题抽象出一元二次方程
一元二次方程的应用
配方法的应用
高次方程
无理方程
分式方程
分式方程的定义
分式方程的解
解分式方程
换元法解分式方程
分式方程的增根
由实际问题抽象出分式方程
分式方程的应用
不等式与不等式组
不等式的定义
不等式的性质
不等式的解集
在数轴上表示不等式的解集
一元一次不等式的定义
解一元一次不等式
一元一次不等式的整数解
由实际问题抽象出一元一次不等式
一元一次不等式的应用
一元一次不等式组的定义
解一元一次不等式组
一元一次不等式组的整数解
由实际问题抽象出一元一次不等式组
一元一次不等式组的应用
函数
平面直角坐标系
点的坐标
规律型:点的坐标
坐标确定位置
坐标与图形性质
两点间的距离公式
函数基础知识
常量与变量
函数的概念
函数关系式
函数自变量的取值范围
函数值
函数的图象
动点问题的函数图象
函数的表示方法
分段函数
一次函数
一次函数的定义
正比例函数的定义
一次函数的图象
正比例函数的图象
一次函数的性质
正比例函数的性质
一次函数图象与系数的关系
一次函数图象上点的坐标特征
一次函数图象与几何变换
待定系数法求一次函数解析式
待定系数法求正比例函数解析式
一次函数与一元一次方程
一次函数与一元一次不等式
一次函数与二元一次方程(组)
两条直线相交或平行问题
根据实际问题列一次函数关系式
一次函数的应用
一次函数综合题
反比例函数
反比例函数的定义
反比例函数的图象
反比例函数图象的对称性
反比例函数的性质
反比例函数系数k的几何意义
反比例函数图象上点的坐标特征
待定系数法求反比例函数解析式
反比例函数与一次函数的交点问题
根据实际问题列反比例函数关系式
反比例函数的应用
反比例函数综合题
二次函数
二次函数的定义
二次函数的图象
二次函数的性质
二次函数图象与系数的关系
二次函数图象上点的坐标特征
二次函数图象与几何变换
二次函数的最值
待定系数法求二次函数解析式
二次函数的三种形式
抛物线与x轴的交点
图象法求一元二次方程的近似根
二次函数与不等式(组)
根据实际问题列二次函数关系式
二次函数的应用
二次函数综合题
图形的性质
图形认识初步
认识立体图形
点、线、面、体
欧拉公式
几何体的表面积
认识平面图形
几何体的展开图
展开图折叠成几何体
专题:正方体相对两个面上的文字
截一个几何体
直线、射线、线段
直线的性质:两点确定一条直线
线段的性质:两点之间线段最短
两点间的距离
比较线段的长短
角的概念
钟面角
方向角
度分秒的换算
角平分线的定义
角的计算
余角和补角
七巧板
线段的和差
角的大小比较
计算器-角的换算
线段的中点
相交线与平行线
相交线
对顶角、邻补角
垂线
垂线段最短
点到直线的距离
同位角、内错角、同旁内角
平行线
平行公理及推论
平行线的判定
平行线的性质
平行线的判定与性质
平行线之间的距离
三角形
三角形
三角形的角平分线、中线和高
三角形的面积
三角形的稳定性
三角形的重心
三角形三边关系
三角形内角和定理
三角形的外角性质
全等图形
全等三角形的性质
全等三角形的判定
直角三角形全等的判定
全等三角形的判定与性质
全等三角形的应用
角平分线的性质
线段垂直平分线的性质
等腰三角形的性质
等腰三角形的判定
等腰三角形的判定与性质
等边三角形的性质
等边三角形的判定
等边三角形的判定与性质
直角三角形的性质
含30度角的直角三角形
直角三角形斜边上的中线
勾股定理
勾股定理的证明
勾股定理的逆定理
勾股数
勾股定理的应用
平面展开-最短路径问题
等腰直角三角形
三角形中位线定理
三角形综合题
四边形
多边形
多边形的对角线
多边形内角与外角
平面镶嵌(密铺)
平行四边形的性质
平行四边形的判定
平行四边形的判定与性质
菱形的性质
菱形的判定
菱形的判定与性质
矩形的性质
矩形的判定
矩形的判定与性质
正方形的性质
正方形的判定
正方形的判定与性质
梯形
直角梯形
等腰梯形的性质
等腰梯形的判定
梯形中位线定理
*平面向量
中点四边形
四边形综合题
平面向量的加法
平面向量的减法
圆的认识
垂径定理
垂径定理的应用
圆心角、弧、弦的关系
圆周角定理
圆内接四边形的性质
相交弦定理
点与圆的位置关系
确定圆的条件
三角形的外接圆与外心
直线与圆的位置关系
切线的性质
切线的判定
切线的判定与性质
弦切角定理
切线长定理
切割线定理
三角形的内切圆与内心
圆与圆的位置关系
相切两圆的性质
相交两圆的性质
正多边形和圆
弧长的计算
扇形面积的计算
圆锥的计算
圆柱的计算
圆的综合题
尺规作图
作图—尺规作图的定义
作图—基本作图
作图—复杂作图
作图—应用与设计作图
作图—代数计算作图
命题与证明
命题与定理
推理与论证
反证法
轨迹
图形的变化
图形的对称
生活中的轴对称现象
轴对称的性质
轴对称图形
镜面对称
关于x轴、y轴对称的点的坐标
坐标与图形变化-对称
作图-轴对称变换
利用轴对称设计图案
剪纸问题
轴对称-最短路线问题
翻折变换(折叠问题)
图形的剪拼
胡不归问题
线段的垂直平分线定理
线段垂直平分线逆定理
作图--线段垂直平分
角平分线定理
角平分线逆定理
图形的平移
生活中的平移现象
平移的性质
坐标与图形变化-平移
作图-平移变换
利用平移设计图案
图形的旋转
生活中的旋转现象
旋转的性质
旋转对称图形
中心对称
中心对称图形
关于原点对称的点的坐标
坐标与图形变化-旋转
作图-旋转变换
利用旋转设计图案
几何变换的类型
几何变换综合题
图形的相似
比例的性质
比例线段
黄金分割
平行线分线段成比例
相似图形
相似多边形的性质
相似三角形的性质
相似三角形的判定
相似三角形的判定与性质
相似三角形的应用
作图—相似变换
位似变换
作图-位似变换
射影定理
相似形综合题
实数与向量相乘
平面向量定理
向量的线性运算
锐角三角函数
锐角三角函数的定义
锐角三角函数的增减性
同角三角函数的关系
互余两角三角函数的关系
特殊角的三角函数值
计算器—三角函数
解直角三角形
解直角三角形的应用
解直角三角形的应用-坡度坡角问题
解直角三角形的应用-仰角俯角问题
解直角三角形的应用-方向角问题
投影与视图
简单几何体的三视图
简单组合体的三视图
由三视图判断几何体
作图-三视图
平行投影
中心投影
视点、视角和盲区
统计与概率
数据收集与处理
调查收集数据的过程与方法
全面调查与抽样调查
总体、个体、样本、样本容量
抽样调查的可靠性
用样本估计总体
频数与频率
频数(率)分布表
频数(率)分布直方图
频数(率)分布折线图
统计表
扇形统计图
条形统计图
折线统计图
统计图的选择
其他统计图
数据分析
算术平均数
加权平均数
计算器-平均数
中位数
众数
极差
方差
标准差
计算器-标准差与方差
统计量的选择
概率
随机事件
可能性的大小
概率的意义
概率公式
几何概率
列表法与树状图法
游戏公平性
利用频率估计概率
模拟实验
数学竞赛
逻辑推理问题
抽屉原理
排列与组合问题
加法原理与乘法原理
容斥原理
简单的极端原理
简单的枚举法
计数方法
染色问题
整数问题
数的十进制
奇数与偶数
数的整除性
带余除法
质数与合数
约数与倍数
同余问题
尾数特征
完全平方数
质因数分解
整数问题的综合运用
数与式
有理数无理数的概念与运算
因式定理与综合除法
余式定理
立方公式
整式的等式证明
对称式和轮换对称式
部分分式
分式的条件求值
分式的等式证明
拆项、添项、配方、待定系数法
绝对值
因式分解
方程与不等式
含字母系数的一元一次方程
含绝对值符号的一元一次方程
二元一次不定方程的整数解
二元一次不定方程的应用
三元一次不定方程
非一次不定方程(组)
多元一次方程组
含字母系数的一元二次方程
含绝对值符号的一元二次方程
一元二次方程的整数根与有理根
一元二次方程根的分布
高次方程
无理方程
二元二次方程组
含字母系数的一元一次不等式
含绝对值的一元一次不等式
一元二次不等式
应用类问题
函数
y=|ax+b|的图象与性质
y=|ax#178;+bx+c|的图象与性质
含字母系数的二次函数
整式函数的最值
分式函数的最值
绝对值函数的最值
无理函数的最值
多元函数的最值
一元二次方程的最值
二次函数在给定区间上的最值
几何问题的最值
实际问题的最值
取整函数
一次函数的最值
函数最值问题
几何
三角形边角关系
面积及等积变换
三角形的五心
四点共圆
圆幂定理
梅涅劳斯定理与塞瓦定理
正弦定理与余弦定理
四种命题及其关系
一笔画定理
几何不等式
立体图形
路线选择问题

垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.

(1)以下三种抽样调查方案:

方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;

方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;

方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.

其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是   (填写“方案一”、“方案二”或“方案三” )

(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表 ( 90 分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为 x 分)

样本容量

平均分

及格率

优秀率

最高分

最低分

100

83.59

95 %

40 %

100

52

分数段

50 x < 60

60 x < 70

70 x < 80

80 x < 90

90 x 100

频数

5

7

18

30

40

结合上述信息解答下列问题:

①样本数据的中位数所在分数段为   

②全校1565名学生,估计竞赛分数达到“优秀”的学生有   人.

来源:2021年云南省中考数学试卷
  • 更新:2021-08-18
  • 题型:解答题
  • 难度:中等

为了弘扬爱国主义精神,某校组织了"共和国成就"知识竞赛,将成绩分为: A (优秀)、 B (良好)、 C (合格)、 D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如图统计图.

(1)本次抽样调查的样本容量是   ,请补全条形统计图;

(2)已知调查对象中只有两位女生竞赛成绩不合格,小李准备随机回访两位竞赛成绩不合格的同学,请用树状图或列表法求出恰好回访到一男一女的概率;

(3)该校共有2000名学生,请你估计该校竞赛成绩"优秀"的学生人数.

来源:2021年四川省自贡市中考数学试卷
  • 更新:2021-08-18
  • 题型:解答题
  • 难度:中等

为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:

(1)这次抽样调查的总人数为   人,扇形统计图中“舞蹈”对应的圆心角度数为   

(2)若该校有1400名学生,估计选择参加书法的有多少人?

(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,根据画树状图或表格法求恰为一男一女的概率.

来源:2021年四川省达州市中考数学试卷
  • 更新:2021-08-11
  • 题型:解答题
  • 难度:中等

为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:

废旧电池数     /

4

5

6

7

8

人数     /

9

11

11

5

4

请根据学生收集到的废旧电池数,判断下列说法正确的是 (    )

A.

样本为40名学生

B.

众数是11节

C.

中位数是6节

D.

平均数是5.6节

来源:2021年山东省聊城市中考数学试卷
  • 更新:2021-08-16
  • 题型:选择题
  • 难度:较易

五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是 (    )

A.

本次抽样调查的样本容量是5000

B.

扇形统计图中的 m 10 %

C.

若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人

D.

样本中选择公共交通出行的有2400人

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:选择题
  • 难度:中等

为推进扬州市"青少年茁壮成长工程",某校开展"每日健身操"活动,为了解学生对"每日健身操"活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:

抽样调查各类喜欢程度人数统计表

喜欢程度

人数

A .非常喜欢

50人

B .比较喜欢

m

C .无所谓

n

D .不喜欢

16人

根据以上信息,回答下列问题:

(1)本次调查的样本容量是   

(2)扇形统计图中表示 A 程度的扇形圆心角为    ° ,统计表中 m =   

(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢"每日健身操"活动(包含非常喜欢和比较喜欢).

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-20
  • 题型:解答题
  • 难度:中等

为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据"厨余垃圾"、"有害垃圾"、"可回收物"和"其他垃圾"这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成统计图.

(1)本次调查的样本容量是   

(2)补全条形统计图;

(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识"完全了解"的居民人数.

来源:2021年江苏省常州市中考数学试卷
  • 更新:2021-08-21
  • 题型:解答题
  • 难度:较易

某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是 (    )

A.

总体是该校4000名学生的体重

B.

个体是每一个学生

C.

样本是抽取的400名学生的体重

D.

样本容量是400

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:选择题
  • 难度:较易

为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间 t (单位: h ) ,按劳动时间分为四组: A 组“ t < 5 ”, B 组“ 5 t < 7 ”, C 组“ 7 t < 9 ”, D 组“ t 9 ”.将收集的数据整理后,绘制成如下两幅不完整的统计图.

根据以上信息,解答下列问题:

(1)这次抽样调查的样本容量是    C 组所在扇形的圆心角的大小是   

(2)将条形统计图补充完整;

(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于 7 h 的学生人数.

来源:2021年湖北省武汉市中考数学试卷
  • 更新:2021-08-01
  • 题型:解答题
  • 难度:未知

近些年来,移动支付已成为人们的主要支付方式之一.某企业为了解员工某月 A B 两种移动支付方式的使用情况,从企业2000名员工中随机抽取了200人,发现样本中 A B 两种支付方式都不使用的有10人,样本中仅使用 A 种支付方式和仅使用 B 种支付方式的员工支付金额 a (元 ) 分布情况如表:

支付金额     a (元     )

0 < a 1000

1000 < a 2000

a > 2000

仅使用     A

36人

18人

6人

仅使用     B

20人

28人

2人

下面有四个推断:

①根据样本数据估计,企业2000名员工中,同时使用 A B 两种支付方式的为800人;

②本次调查抽取的样本容量为200人;

③样本中仅使用 A 种支付方式的员工,该月支付金额的中位数一定不超过1000元;

④样本中仅使用 B 种支付方式的员工,该月支付金额的众数一定为1500元.

其中正确的是 (    )

A.

①③

B.

③④

C.

①②

D.

②④

来源:2021年黑龙江省绥化市中考数学试卷
  • 更新:2021-08-01
  • 题型:选择题
  • 难度:容易

某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:

组别

锻炼时间(分 )

频数(人)

百分比

A

0 x 20

12

20 %

B

20 < x 40

a

35 %

C

40 < x 60

18

b

D

60 < x 80

6

10 %

E

80 < x 100

3

5 %

(1)本次调查的样本容量是   ;表中 a =    b =   

(2)将频数分布直方图补充完整;

(3)已知 E 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是   

(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:解答题
  • 难度:中等

为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如图.由图中信息可知,下列结论错误的是 (    )

A.本次调查的样本容量是600

B.选“责任”的有120人

C.扇形统计图中“生命”所对应的扇形圆心角度数为 64 . 8 °

D.选“感恩”的人数最多

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:选择题
  • 难度:中等

为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为: A "剪纸"、 B "沙画"、 C "葫芦雕刻"、 D "泥塑"、 E "插花".为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.

根据以上信息,回答下列问题:

(1)本次调查的样本容量为    ;统计图中的 a =    b =   

(2)通过计算补全条形统计图;

(3)该校共有2500名学生,请你估计全校喜爱"葫芦雕刻"的学生人数.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:解答题
  • 难度:中等

江苏省第十九届运动会将于2018年9月在扬州举行开幕式,某校为了了解学生“最喜爱的省运会项目”的情况,随机抽取了部分学生进行问卷调查,规定每人从“篮球”、“羽毛球”、“自行车”、“游泳”和“其他”五个选项中必须选择且只能选择一个,并将调查结果绘制成如下两幅不完整的统计图表.

最喜爱的省运会项目的人数调查统计表

最喜爱的项目

人数

篮球

20

羽毛球

9

自行车

10

游泳

a

其他

b

合计

根据以上信息,请回答下列问题:

(1)这次调查的样本容量是   a + b =   

(2)扇形统计图中“自行车”对应的扇形的圆心角为  

(3)若该校有1200名学生,估计该校最喜爱的省运会项目是篮球的学生人数.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:解答题
  • 难度:中等

在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:

类别

家庭藏书 m

学生人数

A

0 m 25

20

B

26 m 100

a

C

101 m 200

50

D

m 201

66

根据以上信息,解答下列问题:

(1)该调查的样本容量为   a =   

(2)在扇形统计图中,“ A ”对应扇形的圆心角为   °

(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:解答题
  • 难度:中等

初中数学总体、个体、样本、样本容量试题