已知:如图,四边形 ABCD , AB / / DC , CB ⊥ AB , AB = 16 cm , BC = 6 cm , CD = 8 cm ,动点 P 从点 D 开始沿 DA 边匀速运动,动点 Q 从点 A 开始沿 AB 边匀速运动,它们的运动速度均为 2 cm / s .点 P 和点 Q 同时出发,以 QA 、 QP 为边作平行四边形 AQPE ,设运动的时间为 t ( s ) , 0 < t < 5 .
根据题意解答下列问题:
(1)用含 t 的代数式表示 AP ;
(2)设四边形 CPQB 的面积为 S ( c m 2 ) ,求 S 与 t 的函数关系式;
(3)当 QP ⊥ BD 时,求 t 的值;
(4)在运动过程中,是否存在某一时刻 t ,使点 E 在 ∠ ABD 的平分线上?若存在,求出 t 的值;若不存在,请说明理由.
如图是一个食品包装盒的展开图。(图中六边形的各边长相等)(1)请写出这个包装盒的多面体形状的名称; (2)请根据图中所标的尺寸,计算这个多面体的侧面积(各个侧面的面积之和)
如图,△ABC的三边分别为AC=5,BC=12,AB="13," 将△ABC沿AD折叠,使AC落在AB上.与E点重合。(1)试判断△ABC的形状,并说明理由.(2)求折痕AD的长.
如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段;请在图中画出AB=,CD=,EF=这样的线段.
如图,直线AB∥CD,EF⊥CD于F,如果∠GEF=20°,求∠1的度数.
如图,EF∥AD,∠1 =∠2,∠BAC = 70°。将求∠AGD的过程填写完整。解:∵EF∥AD( 已知 )∴∠2 = ( )又∵ ∠1=∠2( 已知 )∴ ∠1 = ∠3∴AB∥ ( )∴∠BAC + = 180°。又∵∠BAC= 70°∴∠AGD = 。