初中数学

在平面直角坐标系中, O 为坐标原点,直线 OA 交二次函数 y = 1 4 x 2 的图象于点 A AOB = 90 ° ,点 B 在该二次函数的图象上,设过点 ( 0 , m ) (其中 m > 0 ) 且平行于 x 轴的直线交直线 OA 于点 M ,交直线 OB 于点 N ,以线段 OM ON 为邻边作矩形 OMPN

(1)若点 A 的横坐标为8.

①用含 m 的代数式表示 M 的坐标;

②点 P 能否落在该二次函数的图象上?若能,求出 m 的值;若不能,请说明理由.

(2)当 m = 2 时,若点 P 恰好落在该二次函数的图象上,请直接写出此时满足条件的所有直线 OA 的函数表达式.

来源:2020年江苏省无锡市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + 4 x 轴交于 A B 两点,与 y 轴交于点 C ,且 OB = OC ,过点 C CD y 轴交抛物线于点 D ,过点 D DE x 轴,垂足点为 E tan ACO = 1 2

(1)求抛物线的解析式;

(2)直线 l 经过 A C 两点,将直线 l 向右平移,平移过程中,直线 l y 轴,直线 CD 分别交于点 M N ,将 ΔCMN 沿直线 MN 折叠,点 C 的对应点 F 落在线段 DE 上.

①请求出 ΔFMN 的面积;

②点 P 为抛物线上的点,若 S ΔPMN = S ΔFMN ,请直接写出满足条件的点 P 的坐标.

来源:2016年辽宁省辽阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

两条抛物线的顶点相同.

(1)求抛物线的解析式;

(2)点是抛物线在第四象限内图象上的一动点,过点轴,为垂足,求的最大值;

(3)设抛物线的顶点为点,点的坐标为,问在的对称轴上是否存在点,使线段绕点顺时针旋转得到线段,且点恰好落在抛物线上?若存在,求出点的坐标;若不存在,请说明理由.

来源:2019年四川省内江市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 是以 AB 为直径的 M 的内接四边形,点 A B x 轴上, ΔMBC 是边长为2的等边三角形,过点 M 作直线 l x 轴垂直,交 M 于点 E ,垂足为点 M ,且点 D 平分 AC ̂

(1)求过 A B E 三点的抛物线的解析式;

(2)求证:四边形 AMCD 是菱形;

(3)请问在抛物线上是否存在一点 P ,使得 ΔABP 的面积等于定值5?若存在,请求出所有的点 P 的坐标;若不存在,请说明理由.

来源:2016年青海省西宁市中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,抛物线 yax 2+ bx﹣5与坐标轴交于 A(﹣1,0), B(5,0), C(0,﹣5)三点,顶点为 D

(1)请直接写出抛物线的解析式及顶点 D的坐标;

(2)连接 BC与抛物线的对称轴交于点 E,点 P为线段 BC上的一个动点(点 P不与 BC两点重合),过点 PPFDE交抛物线于点 F,设点 P的横坐标为 m

①是否存在点 P,使四边形 PEDF为平行四边形?若存在,求出点 P的坐标;若不存在,说明理由.

②过点 FFHBC于点 H,求△ PFH周长的最大值.

来源:2018年内蒙古通辽市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 1 2 x 2 + bx + c x 轴交于点 A 和点 B ,与 y 轴交于点 C ,点 B 坐标为 ( 6 , 0 ) ,点 C 坐标为 ( 0 , 6 ) ,点 D 是抛物线的顶点,过点 D x 轴的垂线,垂足为 E ,连接 BD

(1)求抛物线的解析式及点 D 的坐标;

(2)点 F 是抛物线上的动点,当 FBA = BDE 时,求点 F 的坐标;

(3)若点 M 是抛物线上的动点,过点 M MN / / x 轴与抛物线交于点 N ,点 P x 轴上,点 Q 在坐标平面内,以线段 MN 为对角线作正方形 MPNQ ,请写出点 Q 的坐标.

来源:2016年辽宁省葫芦岛市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

已知:如图,抛物线 y = a x 2 + 4 x + c 经过原点 O ( 0 , 0 ) 和点 A ( 3 , 3 ) P 为抛物线上的一个动点,过点 P x 轴的垂线,垂足为 B ( m , 0 ) ,并与直线 OA 交于点 C

(1)求抛物线的解析式;

(2)当点 P 在直线 OA 上方时,求线段 PC 的最大值;

(3)过点 A AD x 轴于点 D ,在抛物线上是否存在点 P ,使得以 P A C D 四点为顶点的四边形是平行四边形?若存在,求 m 的值;若不存在,请说明理由.

来源:2016年西藏中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点,与轴交于点,点的坐标为

(1)求抛物线的解析式;

(2)在抛物线的对称轴上找一点,使的值最小.并求出点坐标;

(3)在第二象限内的抛物线上,是否存在点,使得的面积是面积的一半?若存在,求出点的坐标,若不存在,请说明理由.

来源:2017年西藏中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于点,点,与轴交于点,且过点.点是抛物线上的动点.

(1)求抛物线的解析式;

(2)当点在直线下方时,求面积的最大值.

(3)直线与线段相交于点,当相似时,求点的坐标.

来源:2019年湖南省娄底市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,已知抛物线:轴交于两点的左侧),与轴交于点

(1)直接写出点的坐标;

(2)将抛物线经过向右与向下平移,使得到的抛物线轴交于两点的右侧),顶点的对应点为点,若,求点的坐标及抛物线的解析式;

(3)在(2)的条件下,若点轴上,则在抛物线上是否存在点,使以为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点的坐标;如果不存在,请说明理由.

来源:2020年广西玉林市中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,抛物线 L : y = 1 2 x 2 - 5 4 x - 3 x 轴正半轴交于点 A ,与 y 轴交于点 B

(1)求直线 AB 的解析式及抛物线顶点坐标;

(2)如图1,点 P 为第四象限且在对称轴右侧抛物线上一动点,过点 P PC x 轴,垂足为 C PC AB 于点 D ,求 PD + BD 的最大值,并求出此时点 P 的坐标;

(3)如图2,将抛物线 L : y = 1 2 x 2 - 5 4 x - 3 向右平移得到抛物线 L ' ,直线 AB 与抛物线 L ' 交于 M N 两点,若点 A 是线段 MN 的中点,求抛物线 L ' 的解析式.

来源:2020年湖北省荆门市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - x 2 + bx + 5 x 轴交于 A B 两点.

(1)若过点 C 的直线 x = 2 是抛物线的对称轴.

①求抛物线的解析式;

②对称轴上是否存在一点 P ,使点 B 关于直线 OP 的对称点 B ' 恰好落在对称轴上.若存在,请求出点 P 的坐标;若不存在,请说明理由.

(2)当 b 4 0 x 2 时,函数值 y 的最大值满足 3 y 15 ,求 b 的取值范围.

来源:2020年湖南省湘潭市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 5 经过 A ( - 5 , 0 ) B ( - 4 , - 3 ) 两点,与 x 轴的另一个交点为 C ,顶点为 D ,连接 CD

(1)求该抛物线的表达式;

(2)点 P 为该抛物线上一动点(与点 B C 不重合),设点 P 的横坐标为 t

①当点 P 在直线 BC 的下方运动时,求 ΔPBC 的面积的最大值;

②该抛物线上是否存在点 P ,使得 PBC = BCD ?若存在,求出所有点 P 的坐标;若不存在,请说明理由.

来源:2019年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

已知抛物线 y=﹣ 1 2 x 2 3 2 x的图象如图所示:

(1)将该抛物线向上平移2个单位,分别交 x轴于 AB两点,交 y轴于点 C,则平移后的解析式为   

(2)判断△ ABC的形状,并说明理由.

(3)在抛物线对称轴上是否存在一点 P,使得以 ACP为顶点的三角形是等腰三角形?若存在,求出点 P的坐标;若不存在,说明理由.

来源:2018年内蒙古赤峰市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题试题