已知二次函数 的图象,如图所示
(1)根据方程的根与函数图象之间的关系,将方程 的根在图上近似地表示出来(描点),并观察图象,写出方程 的根(精确到 .
(2)在同一直角坐标系中画出一次函数 的图象,观察图象写出自变量 取值在什么范围时,一次函数的值小于二次函数的值.
(3)如图,点 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在 点上,写出平移后二次函数图象的函数表达式,并判断点 是否在函数 的图象上,请说明理由.
如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,点 的坐标为
(1)求 的值及抛物线的顶点坐标.
(2)点 是抛物线对称轴 上的一个动点,当 的值最小时,求点 的坐标.
如图,在平面直角坐标系中,二次函数 交 轴于点 、 ,交 轴于点 ,在 轴上有一点 ,连接 .
(1)求二次函数的表达式;
(2)若点 为抛物线在 轴负半轴上方的一个动点,求 面积的最大值;
(3)抛物线对称轴上是否存在点 ,使 为等腰三角形?若存在,请直接写出所有 点的坐标,若不存在,请说明理由.
如图,在平面直角坐标系中,已知抛物线 的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线 经过M,N两点.
(1)结合图象,直接写出不等式 的解集;
(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;
(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,求3﹣4q的最大值.
如图,已知点 , , 在抛物线 上.
(1)求抛物线解析式;
(2)在直线 上方的抛物线上求一点 ,使 面积为1;
(3)在 轴下方且在抛物线对称轴上,是否存在一点 ,使 ?若存在,求出 点坐标;若不存在,说明理由.
在平面直角坐标系中,点 为原点,平行于 轴的直线与抛物线 相交于 , 两点(点 在第一象限),点 在 的延长线上.
(1)已知 ,点 的纵坐标为2.
①如图1,向右平移抛物线 使该抛物线过点 ,与 的延长线交于点 ,求 的长.
②如图2,若 ,过点 , 的抛物线 ,其顶点 在 轴上,求该抛物线的函数表达式.
(2)如图3,若 ,过 , , 三点的抛物线 ,顶点为 ,对应函数的二次项系数为 ,过点 作 轴,交抛物线 于 , 两点,求 的值,并直接写出 的值.
已知抛物线 y= a( x﹣1) 2+3( a≠0)与 y轴交于点 A(0,2),顶点为 B,且对称轴 l 1与 x轴交于点 M
(1)求 a的值,并写出点 B的坐标;
(2)有一个动点 P从原点 O出发,沿 x轴正方向以每秒2个单位的速度运动,设运动时间为 t秒,求 t为何值时 PA+ PB最短;
(3)将此抛物线向右平移所得新的抛物线与原抛物线交于点 C,且新抛物线的对称轴 l 2与 x轴交于点 N,过点 C作 DE∥ x轴,分别交 l 1, l 2于点 D、 E,若四边形 MDEN是正方形,求平移后抛物线的解析式.
如图,已知二次函数 , 为常数)的图象经过点 ,点 ,顶点为点 ,过点 作 轴,交 轴于点 ,交该二次函数图象于点 ,连接 .
(1)求该二次函数的解析式及点 的坐标;
(2)若将该二次函数图象向下平移 个单位,使平移后得到的二次函数图象的顶点落在 的内部(不包括 的边界),求 的取值范围;
(3)点 是直线 上的动点,若点 ,点 ,点 所构成的三角形与 相似,请直接写出所有点 的坐标(直接写出结果,不必写解答过程).
已知函数 , .在同一平面直角坐标系中.
(1)若函数 的图象过点 ,函数 的图象过点 ,求 , 的值.
(2)若函数 的图象经过 的顶点.
①求证: ;
②当 时,比较 , 的大小.
如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
已知,抛物线经过点,
(1)求抛物线的解析式;
(2)如图1,抛物线上存在点,使得是以为直角边的直角三角形,请直接写出所有符合条件的点的坐标: .
(3)如图2,直线经过点,且平行与轴,若点为抛物线上任意一点(原点除外),直线交于点,过点作,交抛物线于点,求证:直线一定经过点.
如图,在平面直角坐标系中,抛物线 交 轴于 , 两点,点 是抛物线上在第一象限内的一点,直线 与 轴相交于点 .
(1)求抛物线 的解析式;
(2)当点 是线段 的中点时,求点 的坐标;
(3)在(2)的条件下,求 的值.
如图,是将抛物线 平移后得到的抛物线,其对称轴为 ,与 轴的一个交点为 ,另一个交点为 ,与 轴的交点为 .
(1)求抛物线的函数表达式;
(2)若点 为抛物线上一点,且 ,求点 的坐标;
(3)点 是抛物线上一点,点 是一次函数 的图象上一点,若四边形 为平行四边形,这样的点 、 是否存在?若存在,分别求出点 、 的坐标;若不存在,说明理由.
如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.
(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.