在平面直角坐标系中,点 O 为原点,平行于 x 轴的直线与抛物线 L : y = a x 2 相交于 A , B 两点(点 B 在第一象限),点 D 在 AB 的延长线上.
(1)已知 a = 1 ,点 B 的纵坐标为2.
①如图1,向右平移抛物线 L 使该抛物线过点 B ,与 AB 的延长线交于点 C ,求 AC 的长.
②如图2,若 BD = 1 2 AB ,过点 B , D 的抛物线 L 2 ,其顶点 M 在 x 轴上,求该抛物线的函数表达式.
(2)如图3,若 BD = AB ,过 O , B , D 三点的抛物线 L 3 ,顶点为 P ,对应函数的二次项系数为 a 3 ,过点 P 作 PE / / x 轴,交抛物线 L 于 E , F 两点,求 a 3 a 的值,并直接写出 AB EF 的值.
因式分解: (1)x3-4x;(2)(x-1)(x-4)-10.
如图,EF∥AD,∠1=∠2,∠BAC=80°,将求∠AGD的过程填写完整. ∵EF//AD, ∴∠2=() 又∵∠1=∠2, ∴∠1=∠3() ∴AB//() ∴∠BAC+=180°() ∵∠BAC=80°, ∴∠AGD=
解方程组(1)(2)
计算: (1);(2).
如图1,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与一重合,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时. (1)证明:BE=DF; (2)如图2,作∠EAF的平分线交CD于G点,连接EG.证明:BE+DG=EG; (3)如图3,将图1中的“直角”改为“∠EAF=45°”,当∠EAF的一边与BC的延长线相交于E点,另一边与CD的延长线相交于F点,连接EF.线段BE,DF和EF之间有怎样的数量关系?并加以证明.