已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.
求这个二次函数的关系式;
若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.
半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?
如图,抛物线 与 轴交于点 和点 ,与 轴交于点 ,连接 ,与抛物线的对称轴交于点 ,顶点为点 .
(1)求抛物线的解析式;
(2)点 是对称轴左侧抛物线上的一个动点,点 在射线 上,若以点 、 、 为顶点的三角形与 相似,请直接写出点 的坐标.
如图,在平面直角坐标系中,已知抛物线 与直线 相交于 , 两点,其中 , .
(1)求该抛物线的函数表达式;
(2)点 为直线 下方抛物线上的任意一点,连接 , ,求 面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线 ,平移后的抛物线与原抛物线相交于点 ,点 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 ,使以点 , , , 为顶点的四边形为菱形,若存在,请直接写出点 的坐标;若不存在,请说明理由.
如图,抛物线 与 轴正半轴, 轴正半轴分别交于点 , ,且 ,点 为抛物线的顶点.
(1)求抛物线的解析式及点 的坐标;
(2)点 , 为抛物线上两点(点 在点 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 为抛物线上点 , 之间(含点 , 的一个动点,求点 的纵坐标 的取值范围.
如图,在平面直角坐标系中,已知二次函数 图象的顶点为 ,与 轴交于点 ,异于顶点 的点 在该函数图象上.
(1)当 时,求 的值.
(2)当 时,若点 在第一象限内,结合图象,求当 时,自变量 的取值范围.
(3)作直线 与 轴相交于点 .当点 在 轴上方,且在线段 上时,求 的取值范围.
如图,抛物线 经过点 和 ,与两坐标轴的交点分别为 , , ,它的对称轴为直线 .
(1)求该抛物线的表达式;
(2) 是该抛物线上的点,过点 作 的垂线,垂足为 , 是 上的点.要使以 、 、 为顶点的三角形与 全等,求满足条件的点 ,点 的坐标.
已知抛物线 , , 是常数, 的自变量 与函数值 的部分对应值如下表:
|
|
|
|
0 |
1 |
2 |
|
|
|
|
0 |
|
|
|
|
(1)根据以上信息,可知抛物线开口向 ,对称轴为 ;
(2)求抛物线的表达式及 , 的值;
(3)请在图1中画出所求的抛物线.设点 为抛物线上的动点, 的中点为 ,描出相应的点 ,再把相应的点 用平滑的曲线连接起来,猜想该曲线是哪种曲线?
(4)设直线 与抛物线及(3)中的点 所在曲线都有两个交点,交点从左到右依次为 , , , ,请根据图象直接写出线段 , 之间的数量关系 .
在平面直角坐标系中,设二次函数 , , 是实数, .
(1)若函数 的对称轴为直线 ,且函数 的图象经过点 ,求函数 的表达式.
(2)若函数 的图象经过点 ,其中 ,求证:函数 的图象经过点 , .
(3)设函数 和函数 的最小值分别为 和 ,若 ,求 , 的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
已知抛物线 .
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在 轴上,求其解析式;
(3)设点 , 在抛物线上,若 ,求 的取值范围.
我们把方程 称为圆心为 、半径长为 的圆的标准方程.例如,圆心为 、半径长为3的圆的标准方程是 .在平面直角坐标系中, 与轴交于点 , ,且点 的坐标为 ,与 轴相切于点 ,过点 , , 的抛物线的顶点为 .
(1)求 的标准方程;
(2)试判断直线 与 的位置关系,并说明理由.
已知,在平面直角坐标系中,抛物线 的顶点为 .点 的坐标为 .
(1)求抛物线过点 时顶点 的坐标;
(2)点 的坐标记为 ,求 与 的函数表达式;
(3)已知 点的坐标为 ,当 取何值时,抛物线 与线段 只有一个交点.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.