已知,在平面直角坐标系中,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 的顶点为 A .点 B 的坐标为 ( 3 , 5 ) .
(1)求抛物线过点 B 时顶点 A 的坐标;
(2)点 A 的坐标记为 ( x , y ) ,求 y 与 x 的函数表达式;
(3)已知 C 点的坐标为 ( 0 , 2 ) ,当 m 取何值时,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 与线段 BC 只有一个交点.
如图,在□ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,求ED的长.
如图,P是反比例函数(>0)的图象上的一点,PN垂直轴于点N,PM 垂直y轴于点M,矩形OMPN的面积为2,且ON=1,一次函数的图象经过点P. (1)求该反比例函数和一次函数的解析式; (2)设直线与轴的交点为A,点Q在y轴上,当△QOA的面积等于矩形OMPN的面积的时,直接写出点Q的坐标.
.已知,求的值.
已知:如图,C是AE的中点,∠B=∠D,BC∥DE. 求证:AB=CD
解不等式<,并把它的解集在数轴上表示出来.