已知,在平面直角坐标系中,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 的顶点为 A .点 B 的坐标为 ( 3 , 5 ) .
(1)求抛物线过点 B 时顶点 A 的坐标;
(2)点 A 的坐标记为 ( x , y ) ,求 y 与 x 的函数表达式;
(3)已知 C 点的坐标为 ( 0 , 2 ) ,当 m 取何值时,抛物线 y = x 2 - 2 mx + m 2 + 2 m - 1 与线段 BC 只有一个交点.
等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E。 (1)如图(1),若A(0,1),B(2,0),求C点的坐标; (2)如图(2), 当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE; (3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由。
如图,在△ABC中,AB=AC,∠ABD=60°,∠ABC >60°,2∠ADB=180°-∠BDC. 求证:AB=BD+DC.
一个正数a的平方根是2x―3和5―x,求+3x 的值
如图,若,,,求∠A的度数。
如图,在平面直角坐标系中,A(0,5),B(-3,2),C(-1,-1). (1)在图中作出关于轴的对称图形. (2)分别写出点的坐标为. (3)的面积是.