在平面直角坐标系中,设二次函数 y 1 = x 2 + bx + a , y 2 = a x 2 + bx + 1 ( a , b 是实数, a ≠ 0 ) .
(1)若函数 y 1 的对称轴为直线 x = 3 ,且函数 y 1 的图象经过点 ( a , b ) ,求函数 y 1 的表达式.
(2)若函数 y 1 的图象经过点 ( r , 0 ) ,其中 r ≠ 0 ,求证:函数 y 2 的图象经过点 ( 1 r , 0 ) .
(3)设函数 y 1 和函数 y 2 的最小值分别为 m 和 n ,若 m + n = 0 ,求 m , n 的值.
(北海)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图: 请根据以上统计图提供的信息,解答下列问题: (1)共抽取_____名学生进行问卷调查; (2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数; (3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.
(百色)某班抽查25名学生数学测验成绩(单位:分),频数分布直方图如图: (1)成绩x在什么范围的人数最多?是多少人? (2)若用半径为2的扇形图来描述,成绩在60≤x<70的人数对应的扇形面积是多少? (3)从相成绩在50≤x<60和90≤x<100的学生中任选2人.小李成绩是96分,用树状图或列表法列出所有可能结果,求小李被选中的概率.
(玉林防城港)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张. (1)求两次抽得相同花色的概率; (2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)
(梧州)某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明: 笔试总成绩=(笔试总成绩+加分)÷2 考和总成绩=笔试总成绩+面试总成绩 现有甲、乙两名应聘者,他们的成绩情况如下: (1)甲、乙两人面试的平均成绩为 ; (2)甲应聘者的考核总成绩为 ; (3)根据上表的数据,若只应聘1人,则应录取 .
(钦州)某校决定在6月8日“世界海洋日”开展系列海洋知识的宣传活动,活动有A.唱歌、B.舞蹈、C.绘画、D.演讲四项宣传方式.学校围绕“你最喜欢的宣传方式是什么?”在全校学生中进行随机抽样调查(四个选项中必选且只选一项),根据调查统计结果,绘制了如下两种不完整的统计图表: 请结合统计图表,回答下列问题: (1)本次抽查的学生共 人,a= ,并将条形统计图补充完整; (2)如果该校学生有1800人,请你估计该校喜欢“唱歌”这项宣传方式的学生约有多少人? (3)学校采用抽签方式让每班在A、B、C、D四项宣传方式中随机抽取两项进行展示,请用树状图或列表法求某班所抽到的两项方式恰好是“唱歌”和“舞蹈”的概率.