如图,已知抛物线 y= ax 2﹣2 x+ c经过△ ABC的三个顶点,其中点 A(0,1),点 B(9,10), AC∥ x轴.
(1)求这条抛物线的解析式;
(2)求tan∠ ABC的值;
(3)若点 D为抛物线的顶点,点 E是直线 AC上一点,当△ CDE与△ ABC相似时,求点 E的坐标.
如图1,抛物线 与 轴交于 , ,与 轴交于点 .已知直线 过 , 两点.
(1)求抛物线和直线 的表达式;
(2)点 是抛物线上的一个动点.
①如图1,若点 在第一象限内,连接 ,交直线 于点 .设 的面积为 , 的面积为 ,求 的最大值;
②如图2,抛物线的对称轴 与 轴交于点 ,过点 作 ,垂足为 .点 是对称轴 上的一个动点,是否存在以点 , , , 为顶点的四边形是平行四边形?若存在,求出点 , 的坐标;若不存在,请说明理由.
如图,已知二次函数 的图象与 轴分别交于 , 两点,与 轴交于点
(1)求此二次函数解析式;
(2)点 为抛物线的顶点,试判断 的形状,并说明理由;
(3)将直线 向上平移 个单位,平移后的直线与抛物线交于 , 两点(点 在 轴的右侧),当 为直角三角形时,求 的值.
已知函数 , 均为一次函数, 为常数.
(1)如图1,将直线 绕点 逆时针旋转 得到直线 ,直线 交 轴于点 .若直线 恰好是 , 中某个函数的图象,请直接写出点 坐标以及 可能的值;
(2)若存在实数 ,使得 成立,求函数 , 图象间的距离;
(3)当 时,函数 图象分别交 轴, 轴于 , 两点, 图象交 轴于 点,将函数 的图象最低点 向上平移 个单位后刚好落在一次函数 图象上.设 的图象,线段 ,线段 围成的图形面积为 ,试利用初中知识,探究 的一个近似取值范围.(要求:说出一种得到 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.
如图,在平面直角坐标系中,四边形 是以 为直径的 的内接四边形,点 , 在 轴上, 是边长为2的等边三角形,过点 作直线 与 轴垂直,交 于点 ,垂足为点 ,且点 平分 .
(1)求过 , , 三点的抛物线的解析式;
(2)求证:四边形 是菱形;
(3)请问在抛物线上是否存在一点 ,使得 的面积等于定值5?若存在,请求出所有的点 的坐标;若不存在,请说明理由.
如图,抛物线 y= ax 2+ bx﹣5与坐标轴交于 A(﹣1,0), B(5,0), C(0,﹣5)三点,顶点为 D.
(1)请直接写出抛物线的解析式及顶点 D的坐标;
(2)连接 BC与抛物线的对称轴交于点 E,点 P为线段 BC上的一个动点(点 P不与 B、 C两点重合),过点 P作 PF∥ DE交抛物线于点 F,设点 P的横坐标为 m.
①是否存在点 P,使四边形 PEDF为平行四边形?若存在,求出点 P的坐标;若不存在,说明理由.
②过点 F作 FH⊥ BC于点 H,求△ PFH周长的最大值.
如图1,直线 交 轴于点 ,交 轴于点 ,抛物线 经过点 ,交 轴于点 .点 为抛物线上一个动点,过点 作 轴的垂线 ,过点 作 于点 ,连接 ,设点 的横坐标为 .
(1)求抛物线的解析式;
(2)当 为等腰直角三角形时,求线段 的长;
(3)如图2,将 绕点 逆时针旋转,得到△ ,且旋转角 ,当点 的对应点 落在坐标轴上时,请直接写出点 的坐标.
如图1,在平面直角坐标系中,抛物线与直线交于点和点,与轴交于点.
(1)求,的值及抛物线的解析式;
(2)在图1中,把平移,始终保持点的对应点在抛物线上,点,的对应点分别为,,连接,若点恰好在直线上,求线段的长度;
(3)如图2,在抛物线上是否存在点(不与点重合),使和的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.
如图,抛物线经过,,三点.
(1)求抛物线的函数表达式;
(2)如图1,为抛物线上在第二象限内的一点,若面积为3,求点的坐标;
(3)如图2,为抛物线的顶点,在线段上是否存在点,使得以,,为顶点的三角形与相似?若存在,求点的坐标;若不存在,请说明理由.
如图1,在平面直角坐标系中,已知抛物线与轴相交于、两点(点在点的左侧),与轴交于点.
(1)点的坐标为 ,点的坐标为 ,线段的长为 ,抛物线的解析式为 .
(2)点是线段下方抛物线上的一个动点.
①如果在轴上存在点,使得以点、、、为顶点的四边形是平行四边形.求点的坐标.
②如图2,过点作交线段于点,过点作直线交于点,交轴于点,记,求关于的函数解析式;当取和时,试比较的对应函数值和的大小.
如图,已知抛物线:与轴交于,两点在的左侧),与轴交于点.
(1)直接写出点,,的坐标;
(2)将抛物线经过向右与向下平移,使得到的抛物线与轴交于,两点在的右侧),顶点的对应点为点,若,求点的坐标及抛物线的解析式;
(3)在(2)的条件下,若点在轴上,则在抛物线或上是否存在点,使以,,,为顶点的四边形是平行四边形?如果存在,求出所有符合条件的点的坐标;如果不存在,请说明理由.
如图1,在平面直角坐标系中, , ,以 为圆心, 的长为半径的半圆 交 延长线于 ,连接 , ,过 作 分别交 和半圆 于 , ,连接 , .
(1)求证: 是半圆 的切线;
(2)试判断四边形 的形状,并说明理由;
(3)如图2,若抛物线经过点 且顶点为 .
①求此抛物线的解析式;
②点 是此抛物线对称轴上的一个动点,以 , , 为顶点的三角形与 相似,问抛物线上是否存在一点 .使 ?若存在,请直接写出 点的横坐标;若不存在,说明理由.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
如图,已知抛物线 经过 , 两点,与 轴的另一个交点为 ,顶点为 ,连接 .
(1)求该抛物线的表达式;
(2)点 为该抛物线上一动点(与点 、 不重合),设点 的横坐标为 .
①当点 在直线 的下方运动时,求 的面积的最大值;
②该抛物线上是否存在点 ,使得 ?若存在,求出所有点 的坐标;若不存在,请说明理由.